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ABSTRACT

Improved secuity, it hasbeenargued consists in getting more dots and in the joining themup in atimely
mamer. In this paper we argue that such an aporoach rapdly leads to computationally intractabe
intelligence tasks and doesnot actually deliver what is needed We take timely pattern processing to be the
main intelligence takN computationally speaking, an even more daunting prospect After discussing the
nature of the problemin the light of AshbyOd aw of Recuisite Variety, we introduce the concept of Global
Neighborhood Watch asa socially distributed pattern processing strategy. We show how the applicaton of
filters that privilege cerfain contexts, vartage points, and time frames in conjunction with a distributed
intelligence process drawing on modern OciizerOtechnologies can rapidly home in on relevart secuity
threas. We illustrate the proces by mears of animagnary cas and discuss the policy implications that it
raises A conclusion follows.



What role might a citizenplay in combating terrarism? Consider the following scerario:

The year is 2010. You are traveling by subway from Dulles International Airport to Union Station in
Washington. The time is 9:20am; the train is moderately crowded. You are hanging onto the overhead
handgrip when your cell phone emits a faint beeping sound. It does so because a chemical sensor in your
computer bag has detected a possible presence of a PETN-based material in the subway car (a chemical used in
the manufacture of sophisticated form of C4, the kind of explosive Richard Reid hid in his shoes when he
boarded American Airlines FIt. 63 out of Parisin December 2001). Y ou start looking around. Y ou spot a beat-
up looking rucksack under a seat at the far end of the car. Y ou wonder whether you should act. It is a difficult
decision. Your beeper has occasionally sounded in the past, as you have traveled here and there. By
questioning passengers, you could end up making afool of yourself. Y ou might also be revealing that you are a
member of the Washington chapter of Global Neighborhood Watch (GNW), an international citizen-inspired
antiterrorist network. Members of the US branch of the network are required to respond to signals and report
back to the National Counter-Terrorism Center (NCTC) that was created in 2005. For the time being you
decide to do nothing, knowing that your beeper has aready fired off asignal to the NCTC@ computer. At the
next stop, two women board at the far end of the car. One of them is also a member of GNW. Now her beeper
aso goes offN with a more intense beeper code. The NCTC@& computer GeesOthat the two signals come from
the same cell district. It signals back to the beeper units with a code asking you each to independently Qext-
messageOback your location and what you see; or, you and the other GNW member immediately receive a
phone call from an agent at the NCTC. Y ou each describe the situationN independently of each other.*

As a member of GNW, you are an intelligert communicaton node embedded in a globally distributed
network of sophisticated sensors. Your first regponsibility when your beeper goes off is to regster the
possibility of athreat Oncethis hasbeenegdalished, the next stepis to assess its plausibility. For this you
need further corroborative evidence. In our subway examge, this was provided by the secand GNW
memberOdeerer also firingN at a greater intersity. In effect, she provided NCTC with a Bayesan update
on what wasinitially a fairly low a priori probahility estimat. If your beeger had gone off whenyou were
alone in the middle of a field, for examgde, the degee of corroboration required to egalish plawsibility
would have beenhigherthanfor a subway.

Its faintly futuristic quality apart, how realstic is the above scemario? In an invited article in The
Economist commerting on the findings of the US and UK commissions of inquiry, Efraim Halewy (2004:
21), former head of Mossad, Israef)s".ntelligemeservice,wrotethe following:

There is an inherent understandingEt hat the shortage of information on the threatsN from Islamic terrorism and from

Iraq® weapons of mass destructionN was at the root of the intelligence breakdown on these two fronts. It seems only
logical that the more you know, the safer you are and the greater the chance that you will get thingsright.

Yet Israel@ most costly and fateful failure was its mistaken estimate of Egyptian and Syrian intentions, on the eve of the

Yom Kippur war in 1973, when the two armies unexpectedly attacked Israel in a bid to regain the territories lost in the

1967 war. At the time, Israel had it al: superior intelligence coverage, excellent human resources with good access, high-

level and discreet dialogue with more than one Arab or Mudim leader, and an intelligence-evaluation arm that had

provided an early warming several months before the war, thus preventing it from breaking out at that time. But despite all

of the above, we got it al wrong. The abundance of information led us to intelligence GwbrisO we trusted our superior

analytical prowess rather than ominous indicators on the ground.O

Clearly, the suffi ciency of information hasnot beenthe only issue. The ahlity to rapdly link different
itemsof information together hasalso beenrecagnized asimportart. To this end, the Final Report of the
Seqtember 11" Commission (2004), for examge, proposed the creaton of the National Counter-Terrarism
Certer that would concertrate all the analysts and spies working on counter-terrarism in one place The
September 11" attacks were made all the easer, argues the Commission, becatse not enough informaion
wasshared amag the agercies The proposed new certer OEwill help to connectthe dotsO(The Economist
2004: 30). Yet the CIA emphadzedthat it had warned senor policy-makers of the terrorist threat well
before it happered GDur fundamertal flaw was not withholding informaton. The flaw was in not
recagnizing the significarce of the informaiton that we did have and acing on it promptlyOone senior
offi cial said (The International Herald Tribune 2004: ). In both the US ard the UK, intelligence assessment
is acknowledgedto have beenasmuch of a problemasintelligence gathering (Financial Times 2004).

In this paper, we explore the nature of the data-processing challenges and opportunities that the new
NCTC will confront in the modern age. Empowered by modern informaton and communicaions



technhology, asymmetic threas operak alevel of complexity thatintelligence organizaions have not hadto
deal with hitherto. Such complexity can either be reduced (a cognitive strateqy), or absorbed (an
organizatonal one) (Boisot 1998, Boisot & Child 1999). We shall deal with complexity reduction first. In
the next Secton we first outline the much discussed but little undergood distinction between data
information and knowledge. In Secton 2, we offer a newinterpretation of AshbyOdaw of requisite variety
and in Secton 3 we frame the problem of complexity reduction asone of cognitive filteringh moving from
possible to probabe hypotheses while satisfying plausibility constraints. In Secton 4 we illustrate our
aporoach by further elaborating the scerario that we presnted above. We discuss the organizatonal
implications of our aralysisin Section 5 and then offer a brief conclusion.

1 THE CHALLENGE OF COMPLEXITY REDUCTION
1.1  DATA, INFORMATION, AND KNOWLEDGE

Any living creature survivesby first scaming its ervironmert for data on the threas and opportunities
that confront it. It must then extractthe relevart information from such data and interpret it accading to its
prior experience before acting on it. Where it scars from depends on what data it is sersitive to. This
defines its Umwelt (von UexkYll, 1921)N that is, those parts of the real world (ontology) it has direct
sersory acces to. In the ca® of humars, the range of data that we are sersitive to has beenconsiderablly
exparded by tecmologies that allow us to cagure the very smal via microscopes or the very large via
telexcopes Thes techologies often creae problems of data overload that require usN now aided by
computer imagngN to separae out what is informaive data from what is noise. Effective scaming thus
calls for selectivity with regpectto what will count asdata, what information will be extracted from it, and
what information will be acted upon. Such selectivity is provided by a set of filtersthat aretuned by pag
experiencesto egahlish whatwill validly count asdata and whatinformaton will be extracted (Figure 1).

<<< |nsert Figure 1 about here >>>

Figure 1 highlights the relationship betweendata, information and knowledge (Boisot & Carals 2004).
Any agent operates a set of tunable filters both perceptual and concepual that allow pag knowledge,
values and preferencesto shape both what will regster as data as well as what information will be
extracted from such data. Informaion then modifies an agerntOsknowledge, viewed as a set of probahility
distributions or conditional expectations (Arrow 1984). We canthink of thee filtersasexpressing a set of
hypothessasto whatto look for in environmertal signals. Asindicatedin Figure 1, agerts have two kinds
of acion options: (1) Epistemic (cognitive) action tunes percepual and concepual filters based on
hypothesesN mertal constructions or Odleasthat diein our steaddasPapper (1972) put itN that agerts hold
about the world; (2) Pragmatic (behavioral) action acs direcly upon the world and, in so doing, indirecty
modifies incoming signals prior to their being filtered An agent, for our purposes can be ary living
systemN amoeba, human orgarizatonal, etcN that exhibits both cohererce ard intertionality (Thagard
2000).

1.2 DOTS, LINKS, AND PATTERNS

The tunable filtersthat shape our hypotheses cansometimesfunction too well. When confronted with a
radcaly novel situation, relying solely on pag experiencesto tune the filterscanend up unduly narrowing
the compass of oneOsscaming efforts. The dilemma is clear: Admit too much data and you confront
overload Admit too little and you miss either the novel threator the novel opportunity. This dilemmais
visible both in the tragedy of 9/11 and in the 2003 Iraq war. The 9/11 threat was missed because the
intelligence servicetunable filterswere attuned to the wrong datalN i.e., their scope wastoo narrow. The
2003 Iraq war, by contrad, was a regonse to threas that turned out not to be there. In each cas the
challenge wasto come up with an appropriate epistemic strategy in a timely mamer, one undistorted by
political interegs.

What, in effect, has been the regponse to agymmetic threas of the Al-Qaida type? Writing in The
Economist (2003: 30), six of AmericaDsmost experienced intelligerce pracitioners argued that although
there had beenCEan inakility to connect the dotsOwhat is realy needed is more useful dots to connect,
more fine-grained and better quality data, and more monitoring based on the data. We believe, however,



that simply pleading for more and better dots is to mistake the nature of the problem. An arithmeic
increag in the number of OatsOto play withN high quality or otherwiseN leads to a geometric increag in
the possible connections that one canedahlish betweenthem. It also leads to an exponertial increag in the
number of patterrs that canbe gereratedfrom connected dots. Consider Talke 1 below:

Nmoworgos v | MTioleese | N ool
N=4 L=6 P=64
=10 L=45 P =35trillion
=12 L =66 P =4,700 quadrillion

Table 1. Relation of dots to patterns

Four dots leadto six possible links; they also gererak 64 possible patterrs. Add 6 dots and one gets 10
dots gereraing 45 possible links and approximatly 3.5 trillion possible patterrs. Add just 2 more dots and
you are deaing with 66 possible links and approximatkely 4,700 quadillion possible patterns! The
implicaion of this progression is that whatever we feel about the need for more high quality dots to
connectN and we are not derying that the need is a real oneN if we are not to drown in a sea of
unprocesahle data, we needto homein on mearnngful patterns while simultanecusly filtering out the much
larger number of those that are mearnngless.

The cognitive approachto variety reduction brings us backto the distinction betweendata, information,
and knowledge. Simplifying somewhat, dots areervironmertal signals that regster with an agert asdatalN
a beefer going off, a rucksack under a seat a moderately crowded subway car, etc. Links between dots
constitute information that an agent extracts from the data, and the patterns that can be derived from such
information when properly filtered can become knowledge that the agert canactupon. Paterrs, however,
only acquire the status of knowledge for anagernt when they have graduated from being merely possible to
being suffi ciertly probable to justify action. Note that, in contrag to the Platonic definition of knowledye
as Ojistified true belief,Osuch a pragmatc definition of knowledge does not require it to be certainN i.e.,
trueN but merely probable erough to justify acion.

Data, however, are not patterns and nor, indeed are dots. The problemis well known in science. The
Duhem-Quine theds holds that we never ted hypothesesin isolation but in patterned clusters or chunks
(Duhem 1914, Quine 1969). But aswe have just seen from a few dots ard links a huge number of patterns
becane candidates for teging. The patterns that survive the tegingN i.e., that are now judged to be either
OpawsibleOor Opobabde® will subsecuertly oriert us in an iteraive fashion towards aterding to
particular dots and particular links now deemedo be relevart (Hanson 1958). Yet, giventhe unimagnaly
large number of patterns that we have to start with, how does the proces ever get going? How do we
winnow out unviable patterns and process the rest in a time frame that allows for efficacious action and
adaptation?

The issue, a familiar one in mathematcs and computer science, is one of computational tracthility. As
we have just seen while the number of data points increagsarithmetically, the number of possible patterrs
that can be gereraed from these increa®s exponertially. Thus, while in mary circumstances we face an
exponertial growth of problemsize, at bed our data procesing and transmission capacitiescancope with a
polynomial growth of problem size. It turns out, however, that we humars are fairly good at procesing
patterrs, depoying those that we have accumulated almost unconsciously through prior experienceto make
serse of the world (seeFigure 1). We terd, however, to formulate hypothesesin the neighborhood of our
pag experiencesard thes, then, act asfiltersfor making sense of the new experiencesthat we encounter.
In relatively stalde environmerts this makesefficient use of scarcedata procesing resources But we often
find it diffi cult to move out of the old neighborhood when the novelty of the circumstancesrequiresit, or
when, becauwse of technological progress, data procesing reourcessuddeny increa®. Such movescary a
re-locaton cost. Thisis the well-known problemof paradgm change first idertified and discussed by Kuhn
(1962). Here the challerge is to improve oneOgpattern recagnition skills rather than oneOslata collecion
skills. If oneQsexisting repertoire of patterrs or paradigms is inadequate for interpreting incoming data,



then it hasthe effect of converting information-bearing data into noise. Callecing more data under such
circumsgtancesends up exacerhating the problemsinceit merely increasesthe level of noise.

But what doespatternrecagnition involve?It requiresmaithing the patterns suggeged by incoming data
to stored temgdates Do we, therefore, needto hold in memory quadillions of pattern temgdatesto cope
with the whole range of possible patterns gereratd by the data we collect? No! We adopt the strategy of
our immune system (Kaufman 1993: Ch. 4) and exploit the combinatorial power of a limited number of
pattern elemerts already in our repertoire. Providing we can mix and match these flexibly and rapdly to
incoming data, we greatly reduce the number of patterns that we needto store.

Even so, such pattern reducing strategesmay still not be enough. Our own memary, its combinatorial
powers notwithstanding, may still end up filtering out as mearnngless, patterrs that are potertially
significart. In effect, we run the danger of reducing complexity too quickly. One way of improving our
patternrecagnition skillsis to harness those of other agerts so asto creat a distributed procesing camacity.
This is what the institutions of science are desgned to do. In spite of its competitiveress, scierce is
essentially acollaborative enterprise in which all players sharea concernto extract meaningful information
from datain order to come up with novel patternsN a form of socially distributedinformaton procesing.

When dealng with secuity threas, however, and in contrad to the normal cas in science, key players
have an adversarial rather than a collaborative relationship with each other, one that is bes handled from a
gamethearetic perspecive (Binmore 1994). While some players wish to extract informaion from data,
their adversarieswart to hide informaton in datalN this is the logic of immunology operaing at the human
scale. Here, we are in effect deaing with a form of erncryption, a game of hide-and-seek played with
information. If decryption is about extracing useful informaton from data, encryption is about hiding
useful informaton in data. In the absence of effectve decryption strategesN filtering, by any other nameN
calecing more data under such circumstancesmerely exacerlatesthe problem since it ends up making it
easer to hide information rather than more difficult. Hiding information in noise increagsthe variety one
hasto regpond to, a problemaptly capguredby the cybernetician, Ross Ashby.

2 ASHBYGLEGACY
2.1 ASHBY’SLAW

AshbyOd aw of Reqpisite Variety statesthat only variety can destroy variety (Ashby 1956: 207). More
specffically, his law holds that for a biological or social ertity to be efficacibusly adagtive, the variety of its
internal order must match the variety of the environmental constraints that it confronts. In defining variety,
Ashby (1956: 124EP5) pointedto the following series @, b, ¢, a, ¢, ¢, a, b, ¢, b, b, a.OHe observed that a,
b, ard ¢ repeat, mearing that there are only three Qlistinct elemerisON three kinds of variety or three
degeesof freedbm. In the language of patterrs, however, this is variety at the level of Oats.OSuppose,
instead we define variety in tems of the number of patterns insteadof the number of dots. Then using the
formulaefrom Table 1, we seethat 12 dots allow 7,400 quadillion possible patterrsN a large amaunt of
variety to be degroyed Even supposing 99% of these are not worth paying attertion to, trillions areleft,
and one still doesnOknow, up front, which onesare trivial and which arenot.

Since variety is but the pheromerplogical marifegation of complexity at work, we exterd AshbyOs
treamert of variety to complexity and argue that only complexity can destroy complexity (McKelvey &
Boisot 2003). How might we apply our reformulation of AshbyOdaw? Facedwith an exterral stimulus, a
living creatire can essertially mardal two types of reactons: (1) a purely behavioral regonse of the
stimulus-reonse variety, one that is unreflecively based on instinct; or (2) anintelligert and reflectve
regponse based on aninterpretation of the stimulus, one that interposesitself betweenthe stimulus and the
behavior that it givesrise to. The first type of regonse is hardwired and requiresan adagtive regonse to
be alread/ available in the repertoire to maich whatever stimuli the creatire encounters The second type of
regponse exploits the creatreO©eprogrammabe software@ i.e. itsintelligernceN to reduce the amount of
hard wiring reaquired In effect as alread/ indicaied in Figure 1 above, the second type of regponse
simultareausly modifies what counts as meanngful external variety and what counts as a meaningful
internal regponse. With regectto exterral stimuli, the creaUreOstrategy is to filter out noise, thatis, data
that are not informaton bearing. Interrally, its strategy is to exploit the combinatorial powers of its



regponse repertoire in order to come up with an adaptive regponse without exhausting its energy resources
In the case of human beings confronting ever more complex environmerts, both typesof regonse confront
cognitive and behavioral biases reaulting from an improper use of prior experiences and routines from
excesive stress (Staw, Sardelands & Suton 2003), and from groupthink (Janis 1972). The two kinds of
biasesmutually reinforce each other.

We illustrate the above points in an Ashby Space, shown in Figure 2. On the vertical scale we measire
the complexity of the stimuli impinging on a living system from outside. On the horizontal scale we
measire the internal complexity of the living systemOsegonse to such exterral stimuli. The 45Y4ine ard
below indicatesthe regon in which the complexity of theregponse is atlead asgreatasthat of the stimulus.
Complexity on the diagonal or below it is thus requisite. Above the 45%line, however, at, say, point A, the
complexity of the stimulus exceed that of the regponse. In such circumsances two strategesarepossible:
(1) either increa® reponse complexity by moving horizontally to the right from point A to point B in the
diagram; or (2) reduce stimulus complexity by moving verticaly down from point A to point C in the
diagam. As indicaied by line AD in the diagram, the two strateges are typically combined The first
strategy, AB, we take to be primarily behavioral involving little thought but much experditure of scarce
erergetic resources the secand strategy, AC, we take to be primarily cognitive and ecanomic in its use of
scarceerergetic reources A OmindlessN i.e., purely behavioralN response to exterral stimuli canleadto
an excessive expenditure of energy and to the ultimate disintegration of a living creature. Since we are
intereged in the apolication of intelligence to external threas and opportunities we shall focus on the
cognitive regponse to complexity.

<<< |nsert Figure 2 about here >>>

Stimuli arenoisy data that regster on the sersory apparatus of a living system. The challenge is that of
extracting information from the data and discarding non-informaton beaing dataN that is random noiseN
in a timely fashion. Moving down the vertical scale of the Ashby Space reduces OmisyOcomplexity by
focusing on the reqularities that redde in the stimuli. More importartly, moving down the space
ecaomizeson unnecesary behaviorsN ard hence on scare erergetic resourcesN by reducing the distance
that one hasto move to the right before encountering the 45%ineN say at point D in the diagram.

The problem is that we live in a dynamic world. As phenomera evolve, so do the data by which they
marifest themselves In the ealy phasesof emergert order creaton, for exampleN processesby which new
patterrs evolveN the data are ambiguous and point to myriad alterrative possibilities Over time, however,
as ceriin states of nature are Ogleced)and begn to stakilize, they show their hand in the data. The
perceved ambiguity of phenomera then gradually reduces Out of the myriad possibilities cerain typesof
pattern now resonate with those that aliving creaure can construct from its limitedrepertoire. Thes, then,
becane more plausible than competing alternatives With the further passage of time ard the arrival of
further confirmatory stimuli, a subset of these plawsible patterns will now strike the creatire as distinctly
probable. At the erd of the process, one state is now seenor experienced as being suffi ciertly likely to
justify one of a limited number of regponsesN such as fight or flight. When the state is experienced as
cerain, it eliminates all other contenders and only one regonse is neeced. When the state is merely
experienced ashighly likely, however, it may give rise to a range of possible regponsesdesgnedto cover
several contingerncies Thesethenlook more like the taking out of aninsurance policy or anoption.

In this way, anintelligert creatrre typicaly passesfrom possible to plausible and then on to probabe
worldsN under certain circumstancesan alterrative move from possible to probate worlds ard then onto
plawsible worlds also happerns (Boisot & MacMillan 2004). Much deperds on the repeathlity and
intelligibility of everts. Either way, the actual world, the one in which certainty obtains, only shows up at
the erd of the process, and more oftenthan not, oncethe creatireOsesonseN adapted or notN is already in
place. In this paper, we focus on the possible-plausible-probable-actual trajecory. The journey from
possible worlds to the actual world reg sters as phase trarsitions asone movesdown the vertical axis of the
Ashby Space(seeFigure 3). An intelligert regonse to the law of requisite complexity involvesmoving as
far down the vertical scale asone can suffi ciertly ahead of everts so asto minimize the complexity of an
adapted regponseN ard hence minimize the erergy experditures necesary to deal with them. Yet one can
only move down asfar as oneOsimweltN the ontology one has acess tolN allows. In the case of human



beings, aswe have seen the ontology hasbeenextended by science and tecmology to cover worldsN both
large and smallN that are inaccesible to the human senseson their own.

<<< |nsert Figure 3 about here >>>

One can move down the Ashby space too slowly or too fagt to be appropriately adagtive. The
requirement for certainty slows the downward movement. But under threat the danger is that one will move
down too quickly. The intelligence failures of 9/11 and of the Iraq war are, regectively, examplesof just
such slow or over-hagy moves down the vertical scale of Figure 3. In the cag of 9/11, giventhe tensions
creatdby the terrorist threat complexity wasreducedtoo slowly. In the cas of the Iraqwar and the search
for weapons of mas dedruction, it wasreducedtoo fast. Any move from possible to plausible worlds and
from these into probable worlds should be truth improving, gradually eliminating unviade beliefs ard
gereratng beliefs that one could act uponN i.e., knowledge. The truth to be improved is mace up of two
componerts:

' Coherence: One tentatively accepts a hypothesis as true because it offers intelligible understanding of the phenomenon under
investigationN i.e., it resonates with personal experience (BonJour 1985) while meeting the test of logica consistency.

! Correspondence: A hypothesis corresponds to phenomena that can be observed in the externa world as, for example,
established by standard, sequential (statistics-based) research over time (Tarski 1956).

Cohererce and corregpondence approactes to truth are always intertwined, although at different
moments one will predominate (Boisot & MadMillan2004). The move from possible to plawsible worlds is
based on coherenceN based on oneOpad experiences do the parts of the world one is aware of fit together
and make sense? Doesit paint a logically consistert picture? A coherert one? The move from plausible to
probable worlds, by contrag is based on correspondenceN doesthe pattern one seescorrepond to what is
actually out there?In sum, if possible worlds refer to worlds that we can conceive of, plausible worlds
constitute a subset of possible worlds, those that arecoherert enough to make serse to us. Prababe worlds
constitute a secand subset of possible worlds. Wherethe two subsets intersect we obtain a world for which
we can legtimakly formulate future expectations. As we have already seen we can get from possible
worlds to the intersecton of the two subsets either via plausible worlds or via probalde ones (Boisot and
McMillan 2004). Prdbahility, however, impliesrepeathility. And since the events that we are discussing
in this paperterd to be singularin nature, we shall choose to reachthe intersecton via plausible worlds.

But how doesone gererate plawsible hypotheses? And, having done so, how does one then select from
these hypothesesthat areprobable? The challerge: How to extract meaningful information from noisy data
in a timely fashion while maintaining a truth-improving stance? Figure 1 tells us that a filtering proces is
involved, one thatis shaped by prior expectations and preferences Thes acfvate tunable filtersthat drive
the searchfor weaksignals and their interpretation. As the Figure indicates through pragmatic acion, there
is also anenactmert of possible outcomesthat can shape the world we are calledto regpond to. In the next
Secton we explore the move from possible to probak e worlds via plausible ones

3 GOING FROM POSSIBLE TO THE PROBABLE VIA PLAUSIBLE WORLDS
3.1 USING CONTEXT TO COARSE-GRAIN FINE-SCALE STRUCTURE

The concept of the Global Neighborhood Watch (GNW), that we preserted in the Introduction, builds
on the insight that as individuals in a social network interact over time, they influence each otherOs
behavior, if only in some limited wayN they excharge things ard ideas have ageemerts ard
disagreenerts; discover common interess, likes dislikes shared attitudes values and prejudices share
pag experierces efc. Like elemertary particlesin quartum theary, therefae, individuals carryin memay a
history of their interactons with all other individuals they have come into contact with over timeN thatiis,
pairs or larger groupings of individuals exhibit correlated social histories (McKelvey 2003, 2004b). We
will use the term Qransaction,Oasopposedto Onteracton,Oto reflectour interes in mearingful rather than
neutral encounters betweenindividuals. As transactions multiply, a peroonOsehavior canbe inferred with
some probalility from the behavior of those s/he hastransacied withN i.e., through their correlated social
histories (one for eachperson transacied with). Thus, insteadof describing a personOsehavior directyN
this may, after all, be inaccesible to directobservationN we could do what quartum thearists do ard derive
it from his/her correlated historieswith all other pecple in his/her network.



In quantum theary, entanglement occus when the correlated histories of pairs of electrons are greaer
than zera If individual historiesarethus correlated, they are said to interfere with eachother. Correlated
historiesacrass a random collecion of heterogeneaus individuals will have their predctive effects carceled
out due to the randomness of the forcesat play. Gell-Mann (1994: Ch. 11) refersto a world dersely
populated with interference-prone historiesas having Qine-grainedOstructures The quartum world is just
such a fine-grained structure. By contrag, Gell-Mann labkels the kinds of patterns that we seein the material
world ascoarse-grained structures The quedion thenarises How do coarse-grained patterns emerge from
fine-grained—entangled—structures? More broady: how does pattern emerge from a background of
everything-more-or-less-correlated-with-everything-else that cancels out?

This is equivalert to aking: How can we obtain meaningful patterns from connected dots? Accarding
to Gell-Mann, QA coarse-grained history may be regarded asa class of alternative fine-grained histories all
of which agree on a particular accaunt of whatis followed, but vary over all possible behaviors of whatis
not followed, what is summedoverQ(p. 144). Reseacchersexploit this phenomeron every timethey asume
that the various interrelated effects not specifically hypotheszed or controlled for, are ranrdomized
neuralize eachother, and summedover. Fine-grained structuresincorporate all the error terms

Gell-MannOs/iew is that contextual effects |eadsome correlated historiesin the fi ne-grained structure to
get selecied as the bass of probabilistic patterns while the remaning histories are washed outN their
effects remaining randomized(see also Omnes 1999). For example, facedwith some urgent, external work-
related problem, a projectteamOsiecision process focuseson the contextually imposed problem and not on
all the mary other individual concerrs of its memkers. This is context-driven coarse-graining emeging
from the fine-scale structure of all-possible concerrs and correlated social historiesof the various memters
Gell-MannOsModern InterpretaionOof quartum theary, starts with the most basc probahility formaton
proces in physics, how guarta get trarsformedinto visible mater. Omnes emghaszesthe role of external
context. We use their redefinitions of quantum theay to explain how probable paterns emage from
possible ones For us, these arethe first and most rudimertary pattern-forming proceses From our OdtO
analysis, we know that an almost infinite number of possible patterns canbe derived from a modes number
of dots. We use thinking from quantum physics to guide our thinking about how patterns first emerg and
to show how moving from possible to probable patterns viaplausible onescanreduce pattern proliferation.

3.2 THREE PATTERN FILTERS

The first stepisto reducethe trillions of possible patterns Oait thereGat aslow a cost aspossible. While
12 dots produce 66 links, these pale besde the 2°° possible patterrs that could emerg from the=e links. As
noted above, it is not Gilling in the (missing) dotsOthat is the problem Instead given evena relatvely few
dots, it is the unmarageably large number of patems emerdgng from the Ofne-grained structureO of
connected dots thatinitially do nothing more than obscure the Ocarse-grainedOpossibility of some pending
catadrophe.

In our scerario a dot is just a data pointN a spatio-temporally situated state of nature existing at some
givenlevel of complexity. It could rarnge from O person just entering my subway car may have set off my
beeperOto O white middle-class woman wearing green sunglasses and wearing a black leather coat
bulging at mid-torso has entered my car carrying a strange-looking orange bag, my beeper was triggered
two seconds after she entered.OThe second OatOis clearly more information-bearing thanthe firstN it has
more attributes. The basc pattern-generatng matix thus, consists of d dots! A attributes So, the number
of possible patterns possibilities may actially turn out to be far higher thanthe 2% derivabe from 12 dots.
Each OatOturns out to be an k attribute vecor that can connect at one or more points with the vecbors
associated with other dots in a connectivity matix. Clearly, the more points at which two vectors connect
on, the stronger the correlated histories of their regpecive dots, ard, by implicaton, the stronger the
connecion betweenthem For example, wasthe Qwvhite middle class womenwearing a black leaher coatO
at school with the Malay-looking young manwho enteredcar number 7 two stops before? He was also
carrnying a strange-looking orange bag ard also triggeredthe firing of a beeger. None of this, however,
necesarily constitutes a threat No one knows. Thus, all of the dot-vectors interfere with each other to
produce entanglement, while concealng from outsidersthe connections of possibleinteres.



Any person may link with arother person with regect to each attributeN sunglasses to sunglasses
common schools, orange bags, (perhaps even similar contents?), etc. At the maximum, we could see 2%
pattern-elemert connecions times the h attributescomprising eachvecor = 2h%. For somelarge number of
agerts, therewould be mary dissimilar or non-complementary attributes so in reaity a givendot-vecor, x,
is along bit-string containing some 1s and mostly Os with occasonal 1s at the same level as say, vecior
yN where some association could be egallished Paossibly no linking occus at all, however, so that the
number of patterns remains zero. The basc array of 2A""™"2 possible patterrs could be vag indeed but
moast patterrrelemerts (or frequencies will cancel out and disappearinto the fi ne-scale structure.

We now propose a three-step filtering approach to pattern procesing, one for each of the possible,
plawsible, and probale worlds. The operation need to be computationally tracable and performed at a
fager rate than, say, the rate at which a given threator opportunity builds up. Our proposed hi-tech Oscio-
computationalOapproachfollows in Section 4.

3.21 Step 1: Identify Contextual Tendonsand Possible Worl ds

We start with the needfor what McKelvey (2001, 2004a) calls adaptive tension in the system. New
order emergesin a system when the erergy differertials within itN adaptive tensionsN are of sufficiert
strength to trigger phase tramsitions. Emergert everts resllt when this tensionN i.e, the erergy
differertialsN exceeds some critical value, R. A process of new order creaion is theninitiated and newly
emeging patterrs begn to appear. For a simple example, consider a pot of water being heatd Whenthe
heatproducesa temperaure above R, a phase trarsition occus and the water moleculesbegn moving in a
rolling boilN a new structureN instead of remaining stationary and increasng their vibration rate. This
badc law in complexity sciencel dating back to BZrard (1901)N tells us that only tersions above R calse
emeagent events to unfold. We hypothesze that limiting our searchto contexts in which the tension
exceed RN call these k-contextsN off ers an effective metod for filtering out most of the irrelevart dots,
links, and possible patterns, leaving only those worth more attertion.

Adaptive tersion is the mativating force that acivatestrarsacions (interactons or links) amang OatsO.
Adaptive tersion can sometimes be increased or diminished through pragmaic action as desribed in
Figure 1. The tersion hasto be high enough to exceedthe threshold-actvation levels of the relevart dots. If
no dot gets acivated there camot be an emergn trarsacion. Tension, then separaes out relevant
transactons from the reg, turning them into cardidates for further processingN i.e., they belong to some
possible world, one that provides some k-context in which they have relevarce. It follows that, in a k-
context, if the adaptive tersion remans below R, the transactions will not form part of the emergng coarse-
grained structure of relevant pattems. In the ca® of the beefer, for examge, just going and aking the
white middle class female Olsthis your (orange) bag?Omay be effective in gererating the recuired level of
adaptive tersionN how might she react? It is unlikely to do so, however, if one simply puts the quedion at
random to other passengersthat happento be in the subway car.

3.22 Step 2: Identify Corro borating Vantage Points and Plausible Worl ds

Having egabished a patternDsrelevarce in one of the k-contextsN i.e., a possible worldN additional
corroboration from unbiased pergectivesis essertialN moving patterns from possible to Qlausible.OWe
need multiple vartage points, v, for this added corroboration. If a possible pattern makes sense from the
OsgtuatedOperspectivesof differert agertsN i.e., it gets triangulated thenit gains in plausibility.

Coarroboration through v-vartage points narrows the field of possibly relevant coarse-grained patern
elemerts even further, summing over non-corroborated tension-driven transactions to relegate themto the
fine-scale structure. It constitutes a secand filter that moves us towards coarse-graining and offers two
advartages (1) v-vartage points, say three, offer corroboration that a particular emergert transactioniN
actvated by sometensionN is relevart ard not arandom transacion drivenby sometersion below R; (2) v-
vartage points offer the chance of retrieving a relevant transacion that might have been missed by one
agentOg%-context filter but picked up by anotherOs

In our beeper example, if another passengerO$eeper had fired at the station where the woman boarded
the train, if she had beenobserved to behave suspiciously by a station emgdoyeeg and if all this had been




corroborated, then from three distinctive v-vartage points, one would have rea®n to proces her data
further. It may be that the first passenger ignored his sensorOssignal. No pattern suggesed itself given his
k-context. But now we have triangulation ard the first sensorOsignal needs to be retrieved and attendedto.

3.23 Step 3: Identify Time-based Robustness and Probable \Worl ds

Ashby (1962) observed that chadic environmerts do not impose the kind of variety (the degees of
freedom defining complexity) that an orgarism or anorganizaion caneasly regond to. Just asateapot on
a stove requiresa continuous source of heatto cometo the rolling boil, so our dots, for the maost part, only
get configured into patterns exhibiting some stahility if the adaptive tersion is consistent over a number of
time periods. A tersion that comesand goesor changes its nature is chadic and, thus, camot consistertly
instigate the progressive emeagence of intelligible patterrs over time. Consequertly, tracking phenomera
acrecss somewhat differertiated (mildly chaaic) time-periods accanplishestwo things: (1) Paterns that, are
robust enough to persst for some time under adaptive tersion ard in mildly chaatic conditionsN i.e., they
remain correlated acress sequertial time periodsN are indeedworth worrying about; and (2) Givend ! h
dot-vecbrs, even after teging for k-contexts and v-vartage points, a large number of trarsacions could
remain that do not leadto an emergernce sequence. Further filtering can be achieved by looking for
correlated elemerts thatyield patterns across some given number of time periods.

But what constitutesa relevart number of #-time periods? How far, for examgde, should one work oneOs
way back in time up the beeger trail? Wasthe adaptive tersion that gereratd the currert terrarist concern
born shortly before 9/11, or should we go further back? To the Gulf war of 1990 (Burke, 2003)? To the
creaton of the state of Israelin 1947 (Keppel 2004: Roy 2004)? To the fall of Granada in 1492 (Fletcher
1992)? Altermatively, acrcss how mary future time periods should one wait for everts to unfold? Waiting
too long could allow the emergent pattern to crystallize, with the reault that some emergrt evernt such as
9/11 actally occus. For examde, the FBI could be said to have beenwaiting for the »™ time period,
which, asit turned out was (obviously) at leasg one time period pad the date of the 9/11 attack Yetin
retrospect we seethat the adaptive tersion had beenbuilding up decacs if not certuriesbefore the evert.
Indeed patterns specifically presagng 9/11 were discerrible months before the evert (Strathern 2003).
There is no magc figure to offer for what might be appropriate number of #time periods. Nevertheless, ¢
time-period filterswill reduce the set of plausible patterns to one of probable patterns by focusing only on
those that recu enough over timeto yield afrequency count.

To summarize, we canrepresert our matix of interlinked dots asa dersely connected network that is
gradually thinned out by succesive filteringN i.e., by a sequerce of matrix multiplicatons that reflect the
selectve influence of k, v, and ¢. Such a network can then be mace to behave as a connectionist
computational model in which transacions now look like the correlated firings of neurons.

3.3 COMPUTATIONAL STRATEGIES

In moving from possible to probable worlds via plawsible worlds one confronts the problem of
computational overload How does one deal with it? The computational strateges for dealing with such
overloadwill differ in eachstep. Two such strategeshave beenegallished over the pag thirty years Serial
and paralel computing. They canbe made to work in tandem. Taking eachin turn:

Serial Computing

A serial computer (SC) usesa Obp-downOprocess that takes symbolic material asits input, that is, data
that have alread/ been processed into information in the form of symbolic patterrs. It emits symbolic
material asits output after having submittedit to a set of well-defined operaions. A sophisticated examde
of such a processis structural equation modeling (SEM) (Kapan, 2000), illustratedin Figure 4:

1. For those familiar with questionnaire design, our text-message terms correspond to scale items that act as inputs; our pattern
elementsN part of a pattern-structureN correspond to those variables that make up the theoretical explanatory structure. The
dependent variables get GhunkedQinto prospective Qraining modelsOthat, when finalized, will constitute inputs for the neural
net model. In Figure 4a, the k-contexts show text messages getting processed and filtered into anumber of candidate dependent
variables. In Figure 4b, the v-vantage point further filter these (olausibleOpatterns, with some now becoming more dominant;
Figure 4c shows the filtering effects of the #-time periods now, generating one or two pattern elements that now become
plausible training models for parallel processing by the neural net.
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2. In the SEM, text messages are firgt filtered by the context in which different GNW members find themselves, then by
vantage point provided by individual GNW members, and finaly over successive time periods. The program starts with
specified contexts, such as: terrorists, cults, rebels, pandemic disease indicators, new technologica elements, etc. Or, it may
find contexts as it analyses messages. As texts are passed through k-, v-, and ¢-filters, the emerging candidate patterns become
fewer and more focused. Through successive iterations, the SEM provides ever better training patterns to the neural net parallel
processor.

3. The objective of the SEM computation isto reduce candidate patterns generated by countless possible input data/patterns.

<<< |nsert Figure 4 about here >>>
Parallel Computing

A Paralel procesor (PP) or conneciionist computer uses a Olottom-upOproces dedsgned to deal with
sub-symbolic material asits inputs. The neural network processor (Hassoun 1995) depictedin Figure5isa
typical examgde. By processing this material through a set of Oldden layersOthe PP gereraes plauwsible
patterrs as its outputs. Through succesive iteraions, thes evertually coagulate in to probable ard
therefae acionade hypothess In order to find plausible patterns more rapdly, PPs are often given a
Otaining patternOagainst which to tes those that they gererat for goodness-of-fit. The training patterns act
as ORayedgan priorsOwhich, though a series of iterations, get gradually updated Where do such paterns
comefrom?In our case, the SC providesthem:

1. Our PP is a neura net that takes a QChunkedOoutput from the SEM as a temporary training pattern. |t keeps adjusting its
(nidden variablesOin an attempt to achieve a goodness-of-fit between the patterns that it generates and those it has received as
inputs. Initially it achieves a number of plausible fit and then later a very few probable fit. Its (Bayesian updatesOgenerate the
best matches with the training patterns (the Chunks) produced by the SEM. Eventualy they become identifiable actionable
patterns for reaching back into the real world to uncover the terrorist Giots.O

2. The objective of the neura net computation is to find the few relevant terrorist dot-links from among all those that match
the training pattern.
<<< |nsert Figure 5 about here >>>

As alread/ suggeged if it is to act as an efficiert pattern processor, a PP requires the guidance of
training patterns. The diffi culty is that training patterns themslvesneedto get updated dynamically astime
progresses in response to new text message inputsN the world does not come to a halt while we try to
figure it out! The PPand SC therefae have to work in tandem, asdepctedin Figure 6 in order to acheve
convergernce on some increasngly probabe pattern In our scheme then working forward through #time
periods, the SC finds the few key patterns from among the trillions of possible ones that can actastraining
models for a PP. The latter, working backward in time, and drawing on all the dot-links provided by the
GNW, cannow find the few key dots-links that generate the most probable and hence actionable pattern.

<<< |nsert Figure 6 about here >>>

Sofar, we have described the computational process in the abstract How isit going to be made to work
in practce?Beyond regstering a few beeper signals, a purely humansystem, on its own, would appea to
be incamhbe of rising to the pattern-processing tak we have de<ribed. Nor, on its own, could our SC ard
our PP, even working in tandem: the number of Otaining patterrsOrequired to initiate the computation is
itself still far too large, varied complex, and changealle. No one pattern of interlinked dots could be
credbly selecedin advance. What we needto do is to combine the remarkab e pattern-processing skills of
human agerts with the data-procesing capecities of computers a hybrid socio-computational approach
involving Global Neighborhood Watchers equipped with deteciors, beepers cell phones etc., providing
inputsN both dots ard patterns of dotsN to the two computational procesing componerts described above:

' A socially distributed network (SDN) of Neighborhood Watchers, with beepers, cell phones, text-messaging capability, and
cell-phone-based photography, each providing Qlot-vectorOinputs to serial and paralel computing processes.

I The SDN first provides inputs for aserial computer implementing a structural equation model (SEM). This evolves an optimal
mix of candidate training patterns that improve over time as the SEM cycles through the &, v, ¢ corroboration processes and as
dot-vector inputs get contextually enriched and updated.

I ThePPis QrainedOover time to uncover dot-links comprising the most actionable patternsN in our case patterns generated by
aloca human interpretation of Qlot-vectorsOprovided by beepers, situational contexts, and other input data. The integration of
people, sensors, beepers, and cell phones creates a socio/computational device that harnesses a human being® natural pattern
recognition and sense-making abilities to the data processing and transmission capabilities of sensors, beepers, etc., and then
to the high-speed data processing capabilities of the NCTC computer.
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The cycling of the SEM between continually improving contextually enriched text messages, improved temporary training
patterns (TTPs), and the re-contacting of GNW members so as to further corroborate what they are seeing and interpreting,
eventually resultsin highly probable training patterns for the PP to search for.

The SDN essentialy keeps looking for key interlinked dot-vectors, even as its training patterns are being constantly updated
by the SEM.

These processes result in the timely reduction of trillions of possible patterns down to a manageable number of interlinked dot-
vectorsN i.e., patternsN and an identification of the generating dots, that isin our example, the terrorists-rel evant dots.

DETAILING THE SOCIO/COMPUTATIONAL PROCESSUSING A TEST
SCENARIO

By passing them through &, v, and ¢ filters the SEM cycles the continuously upgraded inputs being

receved (beeer signals, text mesages photos, conversations, etc.) in order to help the PPto selectout the
key links (and dots) from amang the trillions of possible patterrsN i.e., patterrs that have cohererce, canbe
recaggnized and reault in acionable dot connections. A further developmert of our subway scerario will
show how this works. To save spacewe use a number of aconyms. They aredefinedin the box below:

4.1

Glossary of Acronyms
GNW | Globa Neighborhood Watch SDN Socially distributed network
NCTC : National Counter-Terrorism Center | SEM Structural equation model

PP Parallel processor STMs | Short text messages
SC Seria computer TTPs | Temporary training pattern

STAGE ONE: k-CONTEXTS AND POSSIBLE WORLDS

The city of Washington is in Condition Red. QChatterOfrom here and there around the world has accumulated
recently suggesting that a possible terrorist action may be aimed somewhere in the city, involving either the
explosion of a dirty nuclear bomb, or an anthrax or sarin-gas attack. No one knows which. There is some
reason to believe that some of the chatter may also be purposefully misleading. A number of years back,
however, throughout the US and in a number of other countries, GNW organizations were created, each
member carrying a bio-chemical/radiation detection device, a beeper, and a cell phone with photo capabilities.
Washington is a large city and the Washington chapter of GNW has several thousand members anyone of
whom can also be contacted via the network.

The subway train on which you are riding is now about ten minutes from Union Station. Riding with you on
the train are other GNW members on their way to work, going shopping, etc. Triggered by a chemical sensor,
the beeper that you are carrying has just gone off and sent a signa to the NCTC Computer that stores it
temporarily. A couple stops later, Gillian and VeronicaN the former, a GNW memberN enter the other end of
your car whereupon Gillian® beeper goes off (see Introduction).

When two or more beepersN i.e., dotsN go off at the sametime, a correlation is egalished Doesit

sugges a possible patterr?

Most of the time, the beepers go off here and there in a random fashion. In most instances, no inter-dot connections are
implied by such false positives.

If the triggering of two beepers more or less coincidesN say caused by the action of a chemical sensorN then the signals
automatically get registered in the Computer. An agent located at the NCTC can then communicate directly via short text
messaging (STM) with the GNW members wearing the beepers through their cell phones or it can aert a higher-level agent,
who then GonferenceOcalls both of them.

At this point the exploration of possible patternsis initiated. The GNW membersin the train look around the cars they are in.
One sees a man and woman with a baby carriage. The man has a ViediterraneanOlook. The NCTC agent asks the GNW
members to get nearer; the beeper signalsfrom their detectors get stronger.

The signals emitted by the various beepers all get registered in the NCTC® Computer. These messages could be automatic,
having been triggered by the beepers, or they could be human-activated messages transmitted via a cell phone. The latter could
be verbal, with verba word recognition, STMs with computational text recognition, or photos sent to a graphic recognition
processor in the Computer.

Only possible patterrs (some subset of possibly connected input signals) are gererated at this stage. In

this cas, two beegers (dots) firing in a subway car initiate a patterngeneration process betweenthem. This
instarce of correlation between firing beepers need not be a purely local affair. It could extend to
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international locaions such as a garden in Perak (Malaysia), a Mosque in London, SlngaporeOsChargl
Airport, a school playground in Karach, or a casno in Macau No coherert storyN i.e., paternN canyet
accant for these correlated beeger firings. Thatis, the patterncamot yet be recognized. A huge number of
possible cardidate input patterrs, therefore, are in need of processing. The vag majority of them will get
eliminated when passed through k-context filters

When it cancorrelate over space and timeN if only weakyN the beeper signals that it receives the SC
initiates a top-down proces. The next stepis to auomatcally call back the relevart GNW members and
get them to briefly describe the different contexts in which the beeper signals were emitted Patern
recaynition now becamesboth a local and a human affair. GNW members cancommunicat verbally with
anNCTC agert or via STMs to the SEMN located in the Computer. The contextual informaion received at
the NCTCO<omputer is then asociated with keywords relevart to the inputs being received

4.2 STAGE TWO: v-VANTAGE POINTS AND PLAUSIBLE WORLDS

Beepers going off at random hereand there can for the most part, be ignored But if several go off in
some correlated fashion, then keywords can be derived from the diff erert vantage points of GNW memtlers
to guide further data processing and interpretation. In this way patterns becane more plausible:

I The NCTC agent calls the GNW members whose beepers initiated the process and asks them to describe in some detail what
they see. In this specific case, the agent then alerts other GNW members who happen to be either on the subway train or in the
vicinity of its destinationsN Union Station and the other stations the train is due to stop aN to become more dert and to
converge toward these stations, etc. Given some corroborating overlap in the description of GNW members located at v-
vantage points, candidate input pattern elements are identified and processed. These are evolved in an iterative fashion
through the continuing interaction of the NCTC agent and the SC on the one hand with the GNW members, the SDN, and PP
on the other.

! Upon receiving beeper signals, the SEM is programmed to reguest text messages from GNW members using as many standard
code words as possibleN i.e., Central Asian, young male, bearded, strange expression, box, suitcase, |aptop, shopping bag,
stroller, etc. The SEM is programmed, to rank these words against Zipf(3 (1949) power law ranking (which starts with: te, of;
and, to, I, or, say, really, quality....)N looking for frequently used words that are inconsistent with the power law ranking of
frequency of use.

! Guided by the NCTC agent, the SEM keeps cycling through all incoming messages trying to tease out plausible connectipnsN )
pattern elementsN between them (a process depicted in Figure 6). The SEM then suggests suitable terms or labels, to thelpO
GNW members communicete the pettern(s) they see. Of course, the SEM should not be so nelpfulOas to lead members to
GeeOnon-existent patterns. As the SEM® GexperienceO accumulates it gets better at suggesting appropriate termsN those
learnt in earlier training exercises and that GNW members themsel ves would want to use. The socio/computational system N
comprising GNW members, SDN, NCTC agents, SC, PP, and SEMN would earlier have participated in various pattern-
generating training exercises.

As pattern elemerts emerge, get corroborated across sensors, GNW beerers, and v-vartage pointsN i.e.,
as dots get Oflled inOand links are foundN cardidate patterrs begn to take shape. As pattern elemers

accunulate and get further defined, the nascert patterns gain in plawsibility.
4.3 STAGE THREE: t-TIME PERIODS AND PROBABLE WORLDS

Whentwo (or more) GNW inputs gererak correlated keyword-and-context mesagesacrass t-time
periods, the recurrence justifiesthe formulation of probahilistically derivedexpectations. As more GNW
membersapproachthe vicinity of the subway train, the number of possible incoming inputs could well
increag far beyond anNCTC agentO<arecity to regpond. Hereis where SEM becanesesecially useful.
Increasngly plausible patterrs recuring across #-time periods now produce temporary training patterrs as
mputs to the PP,

At some point the SC runs Glock modelOsoftware? to more efficiently abstract out training patterns from the inputs. Needless
to say, the SEM needs some minimum number of inputs to get going. Via the abstracting process, redundant pattern elements

begin to coagulate into candidate pattern elements that get integrated into meaningful Qvholes.OThese the SEM consolidates
into tria sets of pattern elements, Chunks, that are entered into the PP to serve as temporary training patterns (TTPs) for it.

! Each TTPN and there could be many of these instead of just one as with conventional neural net modelsN now acts as a
template against which further inputs can be compared. An emergent pattern would grow in strength to the extent that its
constituent elements matched the SDN-generated patterns that now define a TTP. The larger the number of spatio-temporal
events that match a given TTP, the more probable it becomes.

! For each initial set of two (or more) inputs that end in a TTP, the recursive cycling ends when the most successively refined,
and thus, most probable TTPs are fed back to the SDN for fina checking. At this stage we have a TTP built up from the
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various inputs emanating from interactions with situated GNW members. TTPs thus consist of probable patternsN alternative
configurations of dots and links enjoying a high degree of corroboration.

Stage Threeends with the emergence of alimited number of sequertially corroborated TTPs
4.4 STAGE FOUR: PATTERN MATCHING IN ACTUAL WORLDS

TTPsaretegabe hypotheses Sooner or later, nature will shows its hand and tegs them.By thistime,in
our scerario we have potertially hundreds of GNW members convergng on subway stations along the
trainOsoute. They have gererated a number of TTPsfor the SEM to process as probable scerarios. Many
of these diverge, but some converge to produce Chunks.

I While cycling through and refining TTPs, the SDN compares them and looks for Chunking opportunities.
| Chunks are defined by standard bio-taxonomic method: No single term is essential; mostN but not alN areincluded.
I TTPs, generate chunksin two ways:

e From overlap with or corroboration by other TTPs. They gain credibility from redundancy and are now reduced in
number. The block model abstracts and synthesizes multiple patterns into Chunks and the SEM now sends these out to
GNW members for further corroboration/confirmation.

e From the integration of new incoming recycled STMs providing further corroboration that individual links between dots
constitute valid pattern elements.

I TTPsnow either: (1) merge into asingle Chunk; (2) are cast away as errors; (3) are maintained as alternative hypotheses.

Here is where SEM ObgicOappears SEMs Ocanpute that is, they pick selecied pattern elemerts as
inputs and modify their interreltionship thus producing structural variadesN so asto ultimately find the
selecion of data inputs and paterrs that most accuately define the deperdert variabe (Chunk) to be
predcted Beeper signals, STMs, photos, and taped conversations arethe pattern elements to be input. The
actwal patterns play the role of the OsructureQin the SEM. The inter-relationship of their componerts is
constartly changing, just asindependent and moderaing variades change position in SEM modeling as
correlations strengthen or weaken The Chunks play the role of the deperdent variabe(9N as patern
elemerts are added or deleted and as structural elements (the TTP9 arerearrarged into trial patterns, the
Chunks became better defined The SEM program cyclesthrough the various pattern elements, TTPs ard
Chunk constructions until one or more coherent Chunks emerg. First, following block model theary, the
challerge is to repreent the commonalities amang the TTPs with the fewed Chunks. This reallts from
abstracting out the more frequertly reoccurring links acress the population of patterrsN the pattern(s) built
from the dominant abstractons (those occurring in the most patterrs) becane Chunks (Wasserman& Faust
1994). Secand, in structural equation modeling (Kapan 2000), the challenge is to maxmizethe correlation
of indeperdert variabes(the TTPsarising from the STM terms) with emerging Chunks. Collapsing similar
TTPsinto asingle Chunk accanplishesboth.

Chunks, the output of Stage Four, constitute inferences to the best explanation (SKar 1995)N
hypothetical patterrs systematcaly evolved to train the PPin what to look for asit sifts through the vag
number of dot-vectors suppliedby all of theinput signals.

4.5 THE LEARNING CHALLENGE

As AshbyOdaw implies pattern gereraion need to progress at a fager rate than the rate at which
emegen everts actually unfold. This requires expedtious learring. First, as GNW members became better
trained to perform in SDNsN through the timely identificaion and accuate description of contextN the
speedof pattern corroboration, convergence, and validation acheved by the SC improves There will now
be less volatility of patternelemeris asnew inputs comein. Indeed the reduction in volatility offers a good
proxy measire of corroboration, convergence, and validation at work. Secad, asthe SC, through periodic
pracice drills, gets better at OnterpretingOand OasistingOGNW members, it will end up with fewer but
more valid TTPs Thes now becamne an increasngly sparse SEM OsructureOwith fewer acuual patterns
(SEM variabdesg, and stronger connections between pattern elemerts. Finally, as the SEM structure
improves the number of seemingly different Chunks decreass These can now be teded against an
unfolding reaityN do they sugged a false alarm or do they foreshadow an attack on Union Station? Or
some alternative target?
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5 ORGANIZATIONAL IMPLICATIONS
5.1 THE CHALLENGE OF INTELLIGENCE ASSESSMENT

What arethe organizational implicaions of the above analysis for intelligence service®? As we saw, the
quality of intelligence assessmert wasidenified asa major problemin post 9/11 aralyses Who doesit?
How is it maraged? Returning to our scerario, should the assessmert of what is going onN i.e., pattern
recaynitionN be certralized in some distart office, or should it be decertralized to locally Ogtuatedd
agens? What if one wasdealng with atrain station in Pedawar (Pakistan) rather than Washington? And
how fault-tolerart cansuch patternrecagnition be?

The new NCTC aims to bring all the analysts and spiesworking on counter-terrorism under a single
authority. The hope is that the new reforms will help to Ofll in the dotsOmore rapdly and accuately next
time by promoting a better sharing of information amag the expertsN so as to find more dots more
quickly. Unfortunately, this proposal leawesintelligence assessmentN i.e., pattern recognitionN essertially
undisturbed at the top of the hierachy, and thus subject to the same problems of data overload and of
filtering biasesthat we discussedealier.

Furthemore, putting the intelligence servicesunder a single authority does nothing to remove the silo
mertality that operaesboth within and betweenthese services While the 9/11 CommissionOsFinal Report
describesthe CIA, the FBI, and more than thirteenother intelligence units as Ocasiron stovepipeat the
agercy-level (p. 403), silos also exist within these agencies The FBI, for examgde, alread/ had one boss,
and yet peaple from differert parts of the organizaionN its interral silosN didnOtalk to each other (Pasner
2003). In effect, the Osronger maragemertOthat the Commission calls for to unify all the intelligernce-
gathering agercies (p. 411), will simply reficat at a higher level the existing silo-creatng maragement
aporoachesexisting atthe CIA, NSA, FBI, DOD. And aswe now know, the hierarchcal structure of these
agerciesexacerbatesrather thanamelioratesthe silo problem.

By connecing GNW members directy to a new pattem-processing tecmology, and by taking advarntage
of thousands of Ogen sourceQinformaion opportunities our OdstributedOsocio/computational approach
gets araund silo thinking. How? A hierarchical organizaion degoys informaton filtersin such a way that
informaion is extracted from data collecied at the base and is then passed up to the next hierarchical level.
Thatis, dots (data) collected at the base get OpinedOor linked (information) by intelligence aralysts in the
middle of the hierarcty before being OasessedN i.e., wrought into patterrs (acionae knowledge)N at
the top. The finer the lower level filtersthe slimmerand steefer the hierarchy, asdepictedin stylizedform
in Figure 7a. By contrad, filtering for a distributed approach would produce an orgarizational structure
looking more like Figure 7b. Whereasin Figure 7a, agerts at the bottom eliminate dots at a rapid rate in
order to limit the data procesing load of those higher up the hierarcty, in Figure 7b, lower-level agerts
depoy alimited number of dots to gererak a larger number of links and a vadly larger number of pattern
elemerts requiring higher-level procesing.

<<< |nsert Figure 7 about here >>>

The difference betweenthe two figures reflects fundamentally different data processing strateges In
Figure 7a, relevart information is presumedto redde primarily in the meanof a data distribution. Under
assumptions of a normd distribution and indeperdert everts, the variance is mostly treaed as an error
term, i.e., noise that has to be got rid of as quickly as possible. In Figure 7b, by contrad, relevart
informaton is presumed to resde primarily in the varianceN indeperderce of everts and a normal
distribution canno longer be assumed This is the source of the combinatorial explosion that gererats so
mary patterrs for procesing further up the hierarcty. In the 7b cas alarge amaunt of information-bearing
data hasto be moved up the hierarchy before anything useful can be extracted from it. Focusing on mears
is whatintelligence serviceswere acculturated to do during the Cold War whenthe enemy and its possible
range of behaviors were relatively well known and it wasrelatively eay to tell what wasdata and what was
noise. As Thomas Kean (2004), the Chairman of the 9/11 Commission observes however, the national
secuity bureaicracy is still stuck in the Cold War time warp. In a post-cold war world of asymmetic
threas in which small cawsescan have disproportionately large effects, intelligence servicesmust learnto
focus on informaiton-beaing variancesasmuch ason mears (Gleick 1987, Andrian & McKelvey 2004).
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Clearly the volume of data procesing implied by Figure 7b is mary timeslarger than that implied by
Figure 7a. Too large, we believe, to be effectively processed by any traditional organization or even a
limited number of these such as the CIA, the FBI, Homeland Security, etc. The implicaion of Figure 7cN a
superimposition of Figures 7a and 7bN is that the intelligence proces needs to spread outside existing
hierarchical orgarizaions and take advantage of socially distributed computational methods (Prietula,
Carley, & Gasser 1998). Furthermore, we now needto distinguish betweentradtional hierarchical data
processing and socially distributed pattern procesing. Whereas the former type of procesing still leawes
intelligence assessmertN i.e., pattern procesingN exclusively in the hards of a few overloaded, higher-
level Oeperts,Othe latter type distributes pattern procesing acivities acress a much wider community,
repacing the hierarchicaly locaedN and thus silo-resdertN GexpertsO with the concept of a Global
Neighborhood Watch (GNW) composed of ubiquitously located ordinary citizers. Assessmert does not
therely disappear, but it now operates across differert levels. at the lower lewvels of the hierachy,
meanngful paterrs areintertionally generated and corroborated for subsequent selection and procesing;
athigherlevelsN possibly that of the NCTCN the most promising of these areacually put into play and fed
back to the lower levels in an interactve fashion. The implicaion of our schemeN and what our scerario
builds uponN is thatthe NCTC needs to involve mary more stakeholdersthan existing intelligence services
But to avoid information overload it also needs a way of organizing that is dedgned to take advartage of
our proposed socio/computational tecmology.

5.2 WHO IS MY NEIGHBOR?

A culture that supports distributed pattern procesing differs significartly from one that supports
sequertial data processing alone. In our approach GNW members becane Quoalitions of the watchful. O
Intelligence gathering, checking, corroborating, and contextually erriching, now became the business of
citizers everywhere, aswell asof O#o-filledOgovernmert agencies Our GNW concept canbe configured
differently for different missions:

I Watch organizations can spread across the entire United States and beyondN i.e., to US citizens abroad, to green-card carriers
who travel, and, viaforeign governments, to foreign nationals;

I GNWSs may be put through training exercises, be nationally cognizant, be focused on loca hot-spots, be relatively easily
reequipped, have equipment more easily maintained, upgraded, etc.;

I GNWSs can be rapidly activated and deployed within and around metropolitan areas. In their capacity as employees, they can
be moved in and out of specific sites such as nuclear power plants, container unloading docks, airports, subways, government
buildings, and vulnerable office buildings;

The pre-9/11 FBI story (Paosner 2003, Anonymous 2004) illustratesthe importance of having numeraus
QugentsOacively exploring the vag number of terrarist-relevart dot-veciors and then sharing their findings.
Graham (2004: 243ER44) emphaszesthe needto (Eex pand the number ard oriertation of voices that
contribute to the intelligernce proces.O He also says Ohe intelligence communityEn eeds to be more
amerabe to the use of intelligence collecied from open sourcesO (our italics). We know from recern
experiernce that existing Neighborhood Watch organizaions, the ultimaie Ogen source© contribute
significartly to crime reduction. Could similar citizenbased organizatons help to contain the terrarist
threaf

The GNW concept, however, is not without drawbacks. First, it requiresordinary citizers to take on the
role of secret agents and to snoop on other citizers neighborsN in churches mosques schools,
supermakets, work places transportation systems and the like. Thus, eachmember of a GNW scheme
spieson those around him/her. Since Neighborhood Watchesexist in mary urban neighborhoods, citizers
areobviously willing to play thisrole to further protect their childrenand neighborhoods.

Secand, diverse ethnic, religious, work, and educational groups could come under pressure to help make
the U.S. or their city saferby joining the local GNW orgarizaionN if only to demamstrate Owhose side they
areonCN thus degroying the concepO®ssertially voluntary character. Why is it importart to maintain the
schemeDsvoluntary characer? The very concept of a Orighborhood watchOscheme, invites the quegion:
OVho is my neighbor?Oln arapdly globalizing world, the arswer must be: ke stranger that I have never
met and who may be affected by my action.OTo succeed GNW has to becane part of the struggle for
Oears and mindsOof citizers everywhere. As the 9/11 CommissionOsVice Chairman Lee Hamilton
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(2004), pointed out, military acion and heightened searrity will never be enough. He arguesthat the United
States should promote Oaragerda of opportunityQin impoverished countriesard join Ohe battle of idea®)
so that those regions do not becaneincubators of future terraristsN ashaslrag. At present too mary pecple
outside the WedN and, as Gilles Keppel (2004) has recerly stressed, a good mary in the Weg itselfN
harbor more neighborly feelings towards Osama Bin Laden than towards those who live in the Weg and
who egouse its values In our scerario, we present GNW asa mostly local, domegic affair. Yet for the
concept to realy deliver, one need to devise neighbor-generating policies acress national and cultural
boundaries This, of course,isasmuch the province of foreign policy asof intelligence gathering

6 CONCLUSION

We have drawn upon AshbyOd.aw of Requisite Variety/Complexity (1956) to aralyze the nature of the
secuity challengesthat nation states facein the 21% certury. Under competitive conditions, rapid patern
recaynition becanesaweapon in a cognitive armsracebetweenadversariesN requisite complexity calls for
the gererafon of adaptive regponsesin a timely fashion. We have shown that effective counter-temrorism
recquiresalot more thanjust Oflling in the dots.OGiventhe trillions of possible patterns a few dots give rise
to, the cognitive challenge of quickly reducing the vag complexity of externally emergent paterrs far
exceed the organizational capacities of a few governmert agerncies no matter how well equipped these
might be. As we have shown, in the real world the trade off between generaing data and generatng
meanngful patterns is time-constrained The need for rapid pattern recagnition may thus set a limit to the
amaunt of data that can usefully be collecied and procesed This is a new problem that tradtional
technologies and ways of organizing were never desgned to cope with. The policy implicaions of the
above are that we need
| Globa Neighborhood Watch organizations offering QiistributedO pattern processing and corroboration activitiesN made

possible by ubiquitous and mobile human agents equipped with portable detectors, beepers and cell phones, and

communicating via STMs. These activities provide a basis for moving methodically from possible to probable knowledge via
plausible knowledge.

I A centralized socio-computational technology that:

e Usesdructural equation (with block) modeling to reduce trillions of candidate patterns down to an actionable few. These
then serve asinputsto parallel processorsin the form of successively updated training patterns;

* Uses neural net parallel processing, driven by increasingly accurate training petterns, to focus searches through
corroborated open-source information for relevant dot-links existing in the world as input dataN especially those that
foreshadow some imminent security threat.

I Globa Neighborhood Watch schemes built from local communities throughout the world and comprising a diversity of ethnic,
religious, international, and other groups whose QvatchingOcan be selectively activated when conditions warrant °.
Ours is an optimistic paper.

As far back as 1945, in a classic paper ertitled Ohe Use of Knowledge in Scciety, OFriedrich Hayek
showed how socially distributed processing could help citizers and organizaions cope with a complex and
fagt-moving, nonlinearworld. Eventhen, such paralel procesing strategeswereto be found in markets. In
matersof intelligence, however, governmert agercies continue to operae exclusively through serialN ard
thus, hierarcticalN models of computation and orgarizaion (CIA, FBI, etc). The proposed solution of the
9/11 CommissionN to creae a new intelligence TsaNl simply builds onto this tradtional organizing
strategy. The complexity of the secuity challenge suggeds that these tradtional approachesnow needto be
complemerted by modern socio/computational data procesing metods that integrate silicon- and carbon-
basdagernsin novel ways.

We have demamstrated that Opining the dots,Owhilst « problem, is not the problem. Finding the
computational caphility to proces and corroborate trillions of possible patterns is the problem. New opert+
source pattern procesing technology will be needtd to address it. Yet, since computational strateges are
only effective if the underlying orgarizational capahilitiesrequiredto implemert them arein place, if one
changes computational strategy, then by implicaion, one need to develop new orgarizational capahlities
as well. Our proposed solution integrates new computational proceses with new orgarizatonal ones
Takentogether, they sugged that significart organizaional and cultural challengesloom if US intelligence
agerciesareever to effi caciously articipate and counteractmodernterrarist threats.
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ENDNOTES

! Alternatively or in addition, detectors could be permanently installed in key locationsN like subway cars, train
depots, airports, nuclear facilities, container unloading areas, government buildings, etc.; the portable detectors would
then corroborate and contextually enrich signals from the stationary detectors.

2 Block model programs come out of network sociology. They abstract commonalities across multiple networks
(Wasserman & Faust 1994).

3a early, intelligence services will be able to avail themselves of the socio-computational technology that we are
describing here for their own purposes. How strongly they should then be integrated with the GNW membership
remains an open and highly political question.
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