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ABSTRACT 
Improved security, it has been argued, consists in getting more dots and in the joining them up in a timely 
manner. In this paper we argue that such an approach rapidly leads to computationally intractable 
intelligence tasks and does not actually deliver what is needed. We take timely pattern processing to be the 
main intelligence taskÑ computationally speaking, an even more daunting prospect. After discussing the 
nature of the problem in the light of AshbyÕs Law of Requisite Variety, we introduce the concept of Global 
Neighborhood Watch as a socially distributed pattern processing strategy. We show how the application of 
fi lters that privilege certain contexts, vantage points, and time frames, in conjunction with a distributed 
intelligence process drawing on modern ÒcitizenÓ technologies can rapidly home in on relevant security 
threats. We illustrate the process by means of an imaginary case and discuss the policy implications that it 
raises. A conclusion follows. 
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What role might a citizen play in combating terrorism? Consider the following scenario:  

The year is 2010. You are traveling by subway from Dulles International Airport to Union Station in 
Washington. The time is 9:20am; the train is moderately crowded. You are hanging onto the overhead 
handgrip when your cell phone emits a faint beeping sound. It does so because a chemical sensor in your 
computer bag has detected a possible presence of a PETN-based material in the subway car (a chemical used in 
the manufacture of sophisticated form of C4, the kind of explosive Richard Reid hid in his shoes when he 
boarded American Airlines Flt. 63 out of Paris in December 2001). You start looking around. You spot a beat-
up looking rucksack under a seat at the far end of the car. You wonder whether you should act. It is a diff icult 
decision. Your beeper has occasionally sounded in the past, as you have traveled here and there. By 
questioning passengers, you could end up making a fool of yourself. You might also be revealing that you are a 
member of the Washington chapter of Global Neighborhood Watch (GNW), an international citizen-inspired 
antiterrorist network. Members of the US branch of the network are required to respond to signals and report 
back to the National Counter-Terrorism Center (NCTC) that was created in 2005. For the time being you 
decide to do nothing, knowing that your beeper has already fired off a signal to the NCTCÕs computer. At the 
next stop, two women board at the far end of the car. One of them is also a member of GNW. Now her beeper 
also goes offÑ with a more intense beeper code. The NCTCÕs computer ÒseesÓ that the two signals come from 
the same cell district. It signals back to the beeper units with a code asking you each to independently Òtext-
messageÓ back your location and what you see; or, you and the other GNW member immediately receive a 
phone call from an agent at the NCTC. You each describe the situationÑ independently of each other.1  

As a member of GNW, you are an intelligent communication node embedded in a globally distributed 
network of sophisticated sensors. Your fi rst responsibility when your beeper goes off is to register the 
possibility of a threat. Once this has been established, the next step is to assess its plausibility. For this you 
need further corroborative evidence. In our subway example, this was provided by the second GNW 
memberÕs beeper also fi ringÑ at a greater intensity. In effect, she provided NCTC with a Bayesian update 
on what was initially a fairly low a priori probability estimate. If your beeper had gone off when you were 
alone in the middle of a field, for example, the degree of corroboration required to establish plausibility 
would have been higher than for a subway.  

Its faintly futuristic quality apart, how realistic is the above scenario? In an invited article in The 
Economist commenting on the findings of the US and UK commissions of inquiry, Efraim Halevy (2004: 
21), former head of Mossad, IsraelÕs intelligence service, wrote the following: 

There is an inherent understandingÉt hat the shortage of information on the threatsÑ from Islamic terrorism and from 
IraqÕs weapons of mass destructionÑ was at the root of the intelligence breakdown on these two fronts. It seems only 
logical that the more you know, the safer you are and the greater the chance that you will get things right. 

Yet IsraelÕs most costly and fateful failure was its mistaken estimate of Egyptian and Syrian intentions, on the eve of the 
Yom Kippur war in 1973, when the two armies unexpectedly attacked Israel in a bid to regain the territories lost in the 
1967 war. At the time, Israel had it all: superior intelligence coverage, excellent human resources with good access, high-
level and discreet dialogue with more than one Arab or Muslim leader, and an intelligence-evaluation arm that had 
provided an early warming several months before the war, thus preventing it from breaking out at that time. But despite all 
of the above, we got it all wrong. The abundance of information led us to intelligence ÒhubrisÓ: we trusted our superior 
analytical prowess rather than ominous indicators on the ground.Ó  

Clearly, the suffi ciency of information has not been the only issue. The ability to rapidly link different 
items of information together has also been recognized as important. To this end, the Final Report of the 
September 11th Commission (2004), for example, proposed the creation of the National Counter-Terrorism 
Center that would concentrate all the analysts and spies working on counter-terrorism in one place. The 
September 11th attacks were made all the easier, argues the Commission, because not enough information 
was shared among the agencies. The proposed new center ÒÉwill help to connect the dotsÓ (The Economist 
2004: 30). Yet the CIA emphasized that it had warned senior policy-makers of the terrorist threat well  
before it happened: ÒOur fundamental flaw was not withholding information. The flaw was in not 
recognizing the signifi cance of the information that we did have and acting on it promptlyÓ one senior 
offi cial said (The International Herald Tribune 2004: ). In both the US and the UK, intelligence assessment 
is acknowledged to have been as much of a problem as intelligence gathering (Financial Times 2004). 

In this paper, we explore the nature of the data-processing challenges and opportunities that the new 
NCTC will confront in the modern age. Empowered by modern information and communications 
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technology, asymmetric threats operate a level of complexity that intelligence organizations have not had to 
deal with hitherto. Such complexity can either be reduced (a cognitive strategy), or absorbed (an 
organizational one) (Boisot 1998, Boisot & Child 1999). We shall deal with complexity reduction fi rst. In 
the next Section we fi rst outline the much discussed but little understood distinction between data 
information and knowledge. In Section 2, we offer a new interpretation of AshbyÕs law of requisite variety 
and in Section 3 we frame the problem of complexity reduction as one of cognitive fi lteringÑ moving from 
possible to probable hypotheses while satisfying plausibility constraints. In Section 4 we illustrate our 
approach by further elaborating the scenario that we presented above. We discuss the organizational 
implications of our analysis in Section 5 and then offer a brief conclusion. 

1 THE CHALLENGE OF COMPLEXITY REDUCTION 
1.1  DATA, INFORMATION, AND KNOWLEDGE 

Any living creature survives by fi rst scanning its environment for data on the threats and opportunities 
that confront it. It must then extract the relevant information from such data and interpret it according to its 
prior experience before acting on it. Where it scans from depends on what data it is sensitive to. This 
defines its Umwelt (von UexkŸll, 1921)Ñ that is, those parts of the real world (ontology) it has direct 
sensory access to. In the case of humans, the range of data that we are sensitive to has been considerably 
expanded by technologies that allow us to capture the very small via microscopes or the very large via 
telescopes. These technologies often create problems of data overload that require usÑ now aided by 
computer imagingÑ to separate out what is informative data from what is noise. Effective scanning thus 
calls for selectivity with respect to what will count as data, what information will be extracted from it, and 
what information will be acted upon. Such selectivity is provided by a set of fi lters that are tuned by past 
experiences to establish what will validly count as data and what information will be extracted (Figure 1). 

<<< Insert Figure 1 about here >>> 
Figure 1 highlights the relationship between data, information and knowledge (Boisot & Canals 2004). 

Any agent operates a set of tunable fi lters, both perceptual and conceptual that allow past knowledge, 
values, and preferences to shape both what will register as data as well as what information will be 
extracted from such data. Information then modifies an agentÕs knowledge, viewed as a set of probability 
distributions or conditional expectations (Arrow 1984). We can think of these fi lters as expressing a set of 
hypotheses as to what to look for in environmental signals. As indicated in Figure 1, agents have two kinds 
of action options: (1) Epistemic (cognitive) action tunes perceptual and conceptual fi lters, based on 
hypothesesÑ mental constructions or Òideas that die in our steadÓ as Popper (1972) put itÑ that agents hold 
about the world; (2) Pragmatic (behavioral) action acts directly upon the world and, in so doing, indirectly 
modifies incoming signals prior to their being fi ltered. An agent, for our purposes, can be any living 
systemÑ amoeba, human, organizational, etcÑ that exhibits both coherence and intentionality (Thagard 
2000).  
1.2 DOTS, LINKS, AND PATTERNS  

The tunable fi lters that shape our hypotheses can sometimes function too well. When confronted with a 
radically novel situation, relying solely on past experiences to tune the fi lters can end up unduly narrowing 
the compass of oneÕs scanning efforts. The dilemma is clear: Admit too much data and you confront 
overload. Admit too little and you miss either the novel threat or the novel opportunity. This dilemma is 
visible both in the tragedy of 9/11 and in the 2003 Iraq war. The 9/11 threat was missed because the 
intelligence servicesÕ tunable fi lters were attuned to the wrong dataÑ i.e., their scope was too narrow. The 
2003 Iraq war, by contrast, was a response to threats that turned out not to be there. In each case the 
challenge was to come up with an appropriate epistemic strategy in a timely manner, one undistorted by 
political interests.  

What, in effect, has been the response to asymmetric threats of the Al-Qa'ida type? Writing in The 
Economist (2003: 30), six of AmericaÕs most experienced intelligence practitioners argued that although 
there had been ÒÉan  inability to connect the dotsÓ what is really needed is more useful dots to connect, 
more fine-grained and better quality data, and more monitoring based on the data. We believe, however, 
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that simply pleading for more and better dots is to mistake the nature of the problem. An arithmetic 
increase in the number of ÒdotsÓ to play withÑ high quality or otherwiseÑ leads to a geometric increase in 
the possible connections that one can establish between them. It also leads to an exponential increase in the 
number of patterns that can be generated from connected dots. Consider Table 1 below: 

Number of dots:  N 
Number of possible 
links:  L = N(NÐ1)/2 

Number of possible 
patterns:  P = 2L 

N = 4 L = 6 P = 64 

N = 10 L = 45 P = 3.5 tri ll ion 

N = 12 L = 66 P = 4,700 quadrill ion 

Table 1. Relation of dots to patterns 

Four dots lead to six possible links; they also generate 64 possible patterns. Add 6 dots and one gets 10 
dots generating 45 possible links and approximately 3.5 trillion possible patterns. Add just 2 more dots and 
you are dealing with 66 possible links and approximately 4,700 quadrillion possible patterns! The 
implication of this progression is that whatever we feel about the need for more high quality dots to 
connectÑ and we are not denying that the need is a real oneÑ if we are not to drown in a sea of  
unprocessable data, we need to home in on meaningful patterns while simultaneously fi ltering out the much 
larger number of those that are meaningless.  

The cognitive approach to variety reduction brings us back to the distinction between data, information, 
and knowledge. Simplifying somewhat, dots are environmental signals that register with an agent as dataÑ
a beeper going off, a rucksack under a seat, a moderately crowded subway car, etc. Links between dots 
constitute information that an agent extracts from the data, and the patterns that can be derived from such 
information when properly fi ltered can become knowledge that the agent can act upon. Patterns, however, 
only acquire the status of knowledge for an agent when they have graduated from being merely possible to 
being suffi ciently probable to justify action. Note that, in contrast to the Platonic definition of knowledge 
as Òjustifi ed true belief,Ó such a pragmatic definition of knowledge does not require it to be certainÑ i.e., 
trueÑ but merely probable enough to justify action. 

Data, however, are not patterns and nor, indeed, are dots. The problem is well known in science. The 
Duhem-Quine thesis holds that we never test hypotheses in isolation but in patterned clusters or chunks 
(Duhem 1914, Quine 1969). But as we have just seen, from a few dots and links a huge number of patterns 
become candidates for testing. The patterns that survive the testingÑ i.e., that are now judged to be either 
ÒplausibleÓ or ÒprobableÓÑ will subsequently orient us in an iterative fashion towards attending to 
particular dots and particular links now deemed to be relevant (Hanson 1958). Yet, given the unimaginably 
large number of patterns that we have to start with, how does the process ever get going? How do we 
winnow out unviable patterns and process the rest in a time frame that allows for efficacious action and 
adaptation? 

The issue, a familiar one in mathematics and computer science, is one of computational tractability. As 
we have just seen, while the number of data points increases arithmetically, the number of possible patterns 
that can be generated from these increases exponentially. Thus, while in many circumstances we face an 
exponential growth of problem size, at best our data processing and transmission capacities can cope with a 
polynomial growth of problem size. It turns out, however, that we humans are fairly good at processing 
patterns, deploying those that we have accumulated almost unconsciously through prior experience to make 
sense of the world (see Figure 1). We tend, however, to formulate hypotheses in the neighborhood of our 
past experiences and these, then, act as fi lters for making sense of the new experiences that we encounter. 
In relatively stable environments this makes efficient use of scarce data processing resources. But we often 
find it diffi cult to move out of the old neighborhood when the novelty of the circumstances requires it, or 
when, because of technological progress, data processing resources suddenly increase. Such moves carry a 
re-location cost. This is the well-known problem of paradigm change fi rst identifi ed and discussed by Kuhn 
(1962). Here, the challenge is to improve oneÕs pattern recognition skills rather than oneÕs data collection 
skills. If oneÕs existing repertoire of patterns or paradigms is inadequate for interpreting incoming data, 
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then it has the effect of converting information-bearing data into noise. Collecting more data under such 
circumstances ends up exacerbating the problem since it merely increases the level of noise.  

But what does pattern recognition involve? It requires matching the patterns suggested by incoming data 
to stored templates. Do we, therefore, need to hold in memory quadrillions of pattern templates to cope 
with the whole range of possible patterns generated by the data we collect? No! We adopt the strategy of 
our immune system (Kauffman 1993: Ch. 4) and exploit the combinatorial power of a limited number of 
pattern elements already in our repertoire. Providing we can mix and match these flexibly and rapidly to 
incoming data, we greatly reduce the number of patterns that we need to store. 

Even so, such pattern reducing strategies may still not be enough. Our own memory, its combinatorial 
powers notwithstanding, may still end up fi ltering out as meaningless, patterns that are potentially 
signifi cant. In effect, we run the danger of reducing complexity too quickly. One way of improving our 
pattern recognition skills is to harness those of other agents so as to create a distributed processing capacity. 
This is what the institutions of science are designed to do. In spite of its competitiveness, science is 
essentially a collaborative enterprise in which all players share a concern to extract meaningful information 
from data in order to come up with novel patternsÑ a form of socially distributed information processing.  

When dealing with security threats, however, and in contrast to the normal case in science, key players 
have an adversarial rather than a collaborative relationship with each other, one that is best handled from a 
game-theoretic perspective (Binmore 1994). While some players wish to extract information from data, 
their adversaries want to hide information in dataÑ this is the logic of immunology operating at the human 
scale. Here, we are in effect dealing with a form of encryption, a game of hide-and-seek played with 
information. If decryption is about extracting useful information from data, encryption is about hiding 
useful information in data. In the absence of effective decryption strategiesÑ fi ltering, by any other nameÑ
collecting more data under such circumstances merely exacerbates the problem since it ends up making it 
easier to hide information rather than more diffi cult. Hiding information in noise increases the variety one 
has to respond to, a problem aptly captured by the cybernetician, Ross Ashby.  

2 ASHBYÕS LEGACY 
2.1 ASHBY’S LAW 

AshbyÕs Law of Requisite Variety states that only variety can destroy variety (Ashby 1956: 207). More 
specifi cally, his law holds that for a biological or social entity to be efficaciously adaptive, the variety of its 
internal order must match the variety of the environmental constraints that it confronts. In defining variety, 
Ashby (1956: 124Ð25) pointed to the following series: Òc, b, c, a, c, c, a, b, c, b, b, a.Ó He observed that a, 
b, and c repeat, meaning that there are only three Òdistinct elementsÓÑ three kinds of variety or three 
degrees of freedom. In the language of patterns, however, this is variety at the level of  Òdots.Ó Suppose, 
instead, we define variety in terms of the number of patterns instead of the number of dots. Then, using the 
formulae from Table 1, we see that 12 dots allow 7,400 quadrillion possible patternsÑ a large amount of 
variety to be destroyed! Even supposing 99% of these are not worth paying attention to, trillions are left, 
and one still doesnÕt know, up front, which ones are trivial and which are not. 

Since variety is but the phenomenological manifestation of complexity at work, we extend AshbyÕs 
treatment of variety to complexity and argue that only complexity can destroy complexity (McKelvey &  
Boisot 2003). How might we apply our reformulation of AshbyÕs law? Faced with an external stimulus, a 
living creature can essentially marshal two types of reactions: (1) a purely behavioral response of the 
stimulus-response variety, one that is unreflectively based on instinct; or (2) an intelligent and reflective 
response based on an interpretation of the stimulus, one that interposes itself between the stimulus and the 
behavior that it gives rise to. The fi rst type of response is hard-wired and requires an adaptive response to 
be already available in the repertoire to match whatever stimuli the creature encounters. The second type of 
response exploits the creatureÕs Òreprogrammable softwareÓÑ i.e., its intelligenceÑ to reduce the amount of 
hard wiring required. In effect, as already indicated in Figure 1 above, the second type of response 
simultaneously modifies what counts as meaningful external variety and what counts as a meaningful 
internal response. With respect to external stimuli, the creatureÕs strategy is to fi lter out noise, that is, data 
that are not information bearing. Internally, its strategy is to exploit the combinatorial powers of its 
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response repertoire in order to come up with an adaptive response without exhausting its energy resources. 
In the case of human beings confronting ever more complex environments, both types of response confront 
cognitive and behavioral biases resulting from an improper use of prior experiences and routines, from 
excessive stress (Staw, Sandelands & Sutton 2003), and from groupthink (Janis 1972). The two kinds of 
biases mutually reinforce each other. 

We illustrate the above points in an Ashby Space, shown in Figure 2. On the vertical scale we measure 
the complexity of the stimuli impinging on a living system from outside. On the horizontal scale we 
measure the internal complexity of the living systemÕs response to such external stimuli. The 45¼ line and 
below indicates the region in which the complexity of the response is at least as great as that of the stimulus. 
Complexity on the diagonal or below it is thus requisite. Above the 45¼ line, however, at, say, point A, the 
complexity of the stimulus exceeds that of the response.  In such circumstances, two strategies are possible: 
(1) either increase response complexity by moving horizontally to the right from point A to point B in the 
diagram; or (2) reduce stimulus complexity by moving vertically down from point A to point C in the 
diagram. As indicated by line AD in the diagram, the two strategies are typically combined. The fi rst 
strategy, AB, we take to be primarily behavioral involving little thought but much expenditure of scarce 
energetic resources; the second strategy, AC, we take to be primarily cognitive and economic in its use of 
scarce energetic resources. A ÒmindlessÓÑ i.e., purely behavioralÑ response to external stimuli can lead to 
an excessive expenditure of energy and to the ultimate disintegration of a living creature. Since we are 
interested in the application of intelligence to external threats and opportunities, we shall focus on the 
cognitive response to complexity. 

<<< Insert Figure 2 about here >>> 
Stimuli are noisy data that register on the sensory apparatus of a living system. The challenge is that of 

extracting information from the data and discarding non-information bearing dataÑ that is random noiseÑ
in a timely fashion. Moving down the vertical scale of the Ashby Space reduces ÒnoisyÓ complexity by 
focusing on the regularities that reside in the stimuli. More importantly, moving down the space 
economizes on unnecessary behaviorsÑ and hence on scarce energetic resourcesÑ by reducing the distance 
that one has to move to the right before encountering the 45¼ lineÑ say at point D in the diagram. 

The problem is that we live in a dynamic world. As phenomena evolve, so do the data by which they 
manifest themselves. In the early phases of emergent order creation, for exampleÑ processes by which new 
patterns evolveÑ the data are ambiguous and point to myriad alternative possibilities. Over time, however, 
as certain states of nature are ÒselectedÓ and begin to stabilize, they show their hand in the data. The 
perceived ambiguity of phenomena then gradually reduces. Out of the myriad possibilities, certain types of 
pattern now resonate with those that a living creature can construct from its limited repertoire. These, then, 
become more plausible than competing alternatives. With the further passage of time and the arrival of 
further confi rmatory stimuli, a subset of these plausible patterns will now strike the creature as distinctly 
probable. At the end of the process, one state is now seen or experienced as being suffi ciently likely to 
justify one of a limited number of responsesÑ such as fight or fl ight. When the state is experienced as 
certain, it eliminates all other contenders and only one response is needed. When the state is merely 
experienced as highly likely, however, it may give rise to a range of possible responses designed to cover 
several contingencies. These then look more like the taking out of an insurance policy or an option. 

In this way, an intelligent creature typically passes from possible to plausible and then on to probable 
worldsÑ under certain circumstances an alternative move from possible to probable worlds and then onto 
plausible worlds also happens (Boisot & MacMillan 2004). Much depends on the repeatability and 
intelligibility of events. Either way, the actual world, the one in which certainty obtains, only shows up at 
the end of the process, and more often than not, once the creatureÕs responseÑ adapted or notÑ is already in 
place. In this paper, we focus on the possible-plausible-probable-actual trajectory. The journey from 
possible worlds to the actual world registers as phase transitions as one moves down the vertical axis of the 
Ashby Space (see Figure 3). An intelligent response to the law of requisite complexity involves moving as 
far down the vertical scale as one can, suffi ciently ahead of events so as to minimize the complexity of an 
adapted responseÑ and hence minimize the energy expenditures necessary to deal with them. Yet one can 
only move down as far as oneÕs umweltÑ the ontology one has access toÑ allows. In the case of human 
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beings, as we have seen, the ontology has been extended by science and technology to cover worldsÑ both 
large and smallÑ that are inaccessible to the human senses on their own.  

<<< Insert Figure 3 about here >>> 
One can move down the Ashby space too slowly or too fast to be appropriately adaptive. The 

requirement for certainty slows the downward movement. But under threat, the danger is that one will move 
down too quickly. The intelligence failures of 9/11 and of the Iraq war are, respectively, examples of just 
such slow or over-hasty moves down the vertical scale of Figure 3. In the case of 9/11, given the tensions 
created by the terrorist threat, complexity was reduced too slowly. In the case of the Iraq war and the search 
for weapons of mass destruction, it was reduced too fast. Any move from possible to plausible worlds and 
from these into probable worlds should be truth improving, gradually eliminating unviable beliefs and 
generating beliefs that one could act uponÑ i.e., knowledge. The truth to be improved is made up of two 
components: 
!  Coherence: One tentatively accepts a hypothesis as true because it offers intell igible understanding of the phenomenon under 

investigationÑ i.e., it resonates with personal experience (BonJour 1985) while meeting the test of logical consistency. 

!  Correspondence: A hypothesis corresponds to phenomena that can be observed in the external world as, for example, 
established by standard, sequential (statistics-based) research over time (Tarski 1956). 

Coherence and correspondence approaches to truth are always intertwined, although at different 
moments one will predominate (Boisot &  MacMi llan 2004). The move from possible to plausible worlds is 
based on coherenceÑ based on oneÕs past experiences, do the parts of the world one is aware of fi t together 
and make sense? Does it paint a logically consistent picture? A coherent one? The move from plausible to 
probable worlds, by contrast is based on correspondenceÑ does the pattern one sees correspond to what is 
actually out there? In sum, if possible worlds refer to worlds that we can conceive of, plausible worlds 
constitute a subset of possible worlds, those that are coherent enough to make sense to us. Probable worlds 
constitute a second subset of possible worlds. Where the two subsets intersect we obtain a world for which 
we can legitimately formulate future expectations. As we have already seen, we can get from possible 
worlds to the intersection of the two subsets either via plausible worlds or via probable ones (Boisot and 
McMi llan, 2004). Probability, however, implies repeatability. And since the events that we are discussing 
in this paper tend to be singular in nature, we shall choose to reach the intersection via plausible worlds. 

But how does one generate plausible hypotheses? And, having done so, how does one then select from 
these hypotheses that are probable? The challenge: How to extract meaningful information from noisy data 
in a timely fashion while maintaining a truth-improving stance? Figure 1 tells us that a fi ltering process is 
involved, one that is shaped by prior expectations and preferences. These activate tunable fi lters that drive 
the search for weak signals and their interpretation. As the Figure indicates, through pragmatic action, there 
is also an enactment of possible outcomes that can shape the world we are called to respond to. In the next 
Section we explore the move from possible to probable worlds via plausible ones. 

3 GOING FROM POSSIBLE TO THE PROBABLE VIA PLAUSIBLE WORLDS 
3.1 USING CONTEXT TO COARSE-GRAIN FINE-SCALE STRUCTURE  

The concept of the Global Neighborhood Watch (GNW), that we presented in the Introduction, builds 
on the insight that as individuals in a social network interact over time, they influence each otherÕs 
behavior, if only in some limited wayÑ they exchange things and ideas; have agreements and 
disagreements; discover common interests, likes, dislikes, shared attitudes, values and prejudices, share 
past experiences, etc. Like elementary particles in quantum theory, therefore, individuals carry in memory a 
history of their interactions with all other individuals they have come into contact with over timeÑ that is, 
pairs or larger groupings of individuals exhibit correlated social histories (McKelvey 2003, 2004b). We 
will use the term Òtransaction,Ó as opposed to Òinteraction,Ó to reflect our interest in meaningful rather than 
neutral encounters between individuals. As transactions multiply, a personÕs behavior can be inferred with 
some probability from the behavior of those s/he has transacted withÑ i.e., through their correlated social 
histories (one for each person transacted with). Thus, instead of describing a personÕs behavior directlyÑ
this may, after all, be inaccessible to direct observationÑ we could do what quantum theorists do and derive 
it from his/her correlated histories with all other people in his/her network.  
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In quantum theory, entanglement occurs when the correlated histories of pairs of electrons are greater 
than zero. If  individual histories are thus correlated, they are said to interfere with each other. Correlated 
histories across a random collection of heterogeneous individuals will have their predictive effects canceled 
out due to the randomness of the forces at play. Gell-Mann (1994: Ch. 11) refers to a world densely 
populated with interference-prone histories as having Òfine-grainedÓ structures. The quantum world is just 
such a fine-grained structure. By contrast, Gell-Mann labels the kinds of patterns that we see in the material 
world as coarse-grained structures. The question then arises: How do coarse-grained patterns emerge from 
fine-grained—entangled—structures? More broadly: how does pattern emerge from a background of 
everything-more-or-less-correlated-with-everything-else that cancels out?  

This is equivalent to asking: How can we obtain meaningful patterns from connected dots? According 
to Gell-Mann, ÒA coarse-grained history may be regarded as a class of alternative fine-grained histories, all  
of which agree on a particular account of what is followed, but vary over all possible behaviors of what is 
not followed, what is summed overÓ (p. 144). Researchers exploit this phenomenon every time they assume 
that the various interrelated effects not specifi cally hypothesized, or controlled for, are randomized, 
neutralize each other, and summed over. Fine-grained structures incorporate all the error terms.  

Gell-MannÕs view is that contextual effects lead some correlated histories in the fine-grained structure to 
get selected as the basis of probabilistic patterns while the remaining histories are washed outÑ their 
effects remaining randomized (see also Omn•s 1999). For example, faced with some urgent, external work-
related problem, a project teamÕs decision process focuses on the contextually imposed problem and not on 
all the many other individual concerns of its members. This is context-driven coarse-graining emerging 
from the fine-scale structure of all-possible concerns and correlated social histories of the various members. 
Gell-MannÕs ÒModern InterpretationÓ of quantum theory, starts with the most basic probability formation 
process in physics, how quanta get transformed into visible matter. Omn•s emphasizes the role of external 
context. We use their redefinitions of quantum theory to explain how probable patterns emerge from 
possible ones. For us, these are the fi rst and most rudimentary pattern-forming processes. From our ÒdotÓ 
analysis, we know that an almost infinite number of possible patterns can be derived from a modest number 
of dots. We use thinking from quantum physics to guide our thinking about how patterns fi rst emerge and 
to show how moving from possible to probable patterns via plausible ones can reduce pattern proliferation.  

3.2 THREE PATTERN FILTERS  
The fi rst step is to reduce the trillions of possible patterns Òout thereÓ at as low a cost as possible. While 

12 dots produce 66 links, these pale beside the 266 possible patterns that could emerge from these links. As 
noted above, it is not Òfi lling in the (missing) dotsÓ that is the problem. Instead, given even a relatively few 
dots, it is the unmanageably large number of patterns emerging from the Òfine-grained structureÓ of 
connected dots that initially do nothing more than obscure the Òcoarse-grainedÓ possibility of some pending 
catastrophe. 

In our scenario a dot is just a data pointÑ a spatio-temporally situated state of nature existing at some 
given level of complexity. It could range from ÒA person just entering my subway car may have set off my 
beeperÓ to ÒA white middle-class woman wearing green sunglasses and wearing a black leather coat 
bulging at mid-torso has entered my car carrying a strange-looking orange bag; my beeper was triggered 
two seconds after she entered.Ó The second ÒdotÓ is clearly more information-bearing than the fi rstÑ it has 
more attributes. The basic pattern-generating matrix thus, consists of d dots !  h attributes. So, the number 
of possible patterns possibilities may actually turn out to be far higher than the 266 derivable from 12 dots. 
Each ÒdotÓ turns out to be an h attribute vector that can connect at one or more points with the vectors 
associated with other dots in a connectivity matrix. Clearly, the more points at which two vectors connect 
on, the stronger the correlated histories of their respective dots, and, by implication, the stronger the 
connection between them. For example, was the Òwhite middle class women wearing a black leather coatÓ 
at school with the Malay-looking young man who entered car number 7 two stops before? He was also 
carrying a strange-looking orange bag and also triggered the fi ring of a beeper. None of this, however, 
necessarily constitutes a threat. No one knows. Thus, all of the dot-vectors interfere with each other to 
produce entanglement, while concealing from outsiders the connections of possible interest.  
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Any person may link with another person with respect to each attributeÑ sunglasses to sunglasses, 
common schools, orange bags, (perhaps even similar contents?), etc. At the maximum, we could see 266 
pattern-element connections times the h attributes comprising each vector = 2h66. For some large number of 
agents, there would be many dissimilar or non-complementary attributes, so in reality a given dot-vector, x, 
is a long bit-string containing some 1s and mostly 0s with occasional 1s at the same level as, say, vector 
yÑ where some association could be established. Possibly no linking occurs at all, however, so that the 
number of patterns remains zero. The basic array of 2hN(NÐ1)/2 possible patterns could be vast indeed but 
most pattern-elements (or frequencies) will cancel out and disappear into the fine-scale structure.  

We now propose a three-step fi ltering approach to pattern processing, one for each of the possible, 
plausible, and probable worlds. The operation needs to be computationally tractable and performed at a 
faster rate than, say, the rate at which a given threat or opportunity builds up. Our proposed hi-tech Òsocio-
computationalÓ approach follows in Section 4. 
3.2.1 Step 1: Identi fy Contextual Tensions and Possible Worl ds 

We start with the need for what McKelvey (2001, 2004a) calls adaptive tension in the system.  New 
order emerges in a system when the energy differentials within itÑ adaptive tensionsÑ are of suffi cient 
strength to trigger phase transitions. Emergent events result when this tensionÑ i.e., the energy 
differentialsÑ exceeds some critical value, R. A process of new order creation is then initiated and newly 
emerging patterns begin to appear. For a simple example, consider a pot of water being heated. When the 
heat produces a temperature above R, a phase transition occurs and the water molecules begin moving in a 
rolling boilÑ a new structureÑ instead of remaining stationary and increasing their vibration rate. This 
basic law in complexity scienceÑ dating back to BŽnard (1901)Ñ tells us that only tensions above R cause 
emergent events to unfold. We hypothesize that limiting our search to contexts in which the tension 
exceeds RÑ call these k-contextsÑ offers an effective method for fi ltering out most of the irrelevant dots, 
links, and possible patterns, leaving only those worth more attention.  

Adaptive tension is the motivating force that activates transactions (interactions or links) among ÒdotsÓ. 
Adaptive tension can sometimes be increased or diminished through pragmatic action as described in 
Figure 1. The tension has to be high enough to exceed the threshold-activation levels of the relevant dots. If 
no dot gets activated there cannot be an emergent transaction. Tension, then, separates out relevant 
transactions from the rest, turning them into candidates for further processingÑ i.e., they belong to some 
possible world, one that provides some k-context in which they have relevance. It follows that, in a k-
context, if the adaptive tension remains below R, the transactions will not form part of the emerging coarse-
grained structure of relevant patterns. In the case of the beeper, for example, just going and asking the 
white middle class female ÒIs this your (orange) bag?Ó may be effective in generating the required level of 
adaptive tensionÑ how might she react? It is unlikely to do so, however, if one simply puts the question at 
random to other passengers that happen to be in the subway car. 
3.2.2 Step 2: Identi fy Corro borating Vantage Points and Plausible Worl ds 

Having established a patternÕs relevance in one of the k-contextsÑ i.e., a possible worldÑ additional 
corroboration from unbiased perspectives is essentialÑ moving patterns from possible to Òplausible.Ó We 
need multiple vantage points, v, for this added corroboration. If  a possible pattern makes sense from the 
ÒsituatedÓ perspectives of different agentsÑ i.e., it gets triangulatedÑ then it gains in plausibility.  

Corroboration through v-vantage points narrows the field of possibly relevant coarse-grained pattern-
elements even further, summing over non-corroborated tension-driven transactions to relegate them to the 
fine-scale structure. It constitutes a second fi lter that moves us towards coarse-graining and offers two 
advantages: (1) v-vantage points, say three, offer corroboration that a particular emergent transactionÑ
activated by some tensionÑ is relevant and not a random transaction driven by some tension below R; (2) v-
vantage points offer the chance of retrieving a relevant transaction that might have been missed by one 
agentÕs k-context fi lter but picked up by anotherÕs.  

In our beeper example, if another passengerÕs beeper had fi red at the station where the woman boarded 
the train, if she had been observed to behave suspiciously by a station employee, and if all this had been 
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corroborated, then, from three distinctive v-vantage points, one would have reason to process her data 
further. It may be that the fi rst passenger ignored his sensorÕs signal. No pattern suggested itself given his 
k-context. But now we have triangulation and the fi rst sensorÕs signal needs to be retrieved and attended to. 

3.2.3 Step 3: Identi fy Ti me-based Robustness and Probable Worl ds 
Ashby (1962) observed that chaotic environments do not impose the kind of variety (the degrees of 

freedom defining complexity) that an organism or an organization can easily respond to. Just as a teapot on 
a stove requires a continuous source of heat to come to the rolling boil, so our dots, for the most part, only 
get configured into patterns exhibiting some stability if the adaptive tension is consistent over a number of  
time periods. A tension that comes and goes or changes its nature is chaotic and, thus, cannot consistently 
instigate the progressive emergence of intelligible patterns over time. Consequently, tracking phenomena 
across somewhat differentiated (mildly chaotic) time-periods accomplishes two things: (1) Patterns that, are 
robust enough to persist for some time under adaptive tension and in mildly chaotic conditionsÑ i.e., they 
remain correlated across sequential time periodsÑ are indeed worth worrying about; and (2) Given d !  h 
dot-vectors, even after testing for k-contexts and v-vantage points, a large number of transactions could 
remain that do not lead to an emergence sequence. Further fi ltering can be achieved by looking for 
correlated elements that yield patterns across some given number of time periods.  

But what constitutes a relevant number of t-time periods? How far, for example, should one work oneÕs 
way back in time up the beeper trail? Was the adaptive tension that generated the current terrorist concern 
born shortly before 9/11, or should we go further back? To the Gulf war of 1990 (Burke, 2003)? To the 
creation of the state of Israel in 1947 (Keppel 2004: Roy 2004)? To the fall of Granada in 1492 (Fletcher 
1992)? Alternatively, across how many future time periods should one wait for events to unfold? Waiting 
too long could allow the emergent pattern to crystallize, with the result that some emergent event such as 
9/11 actually occurs. For example, the FBI could be said to have been waiting for the nth time period, 
which, as it turned out was (obviously) at least one time period past the date of the 9/11 attack. Yet in 
retrospect we see that the adaptive tension had been building up decades, if not centuries before the event. 
Indeed, patterns specifi cally presaging 9/11 were discernible months before the event (Strathern 2003). 
There is no magic figure to offer for what might be appropriate number of t-time periods. Nevertheless, t-
time-period fi lters will reduce the set of plausible patterns to one of probable patterns by focusing only on 
those that recur enough over time to yield a frequency count. 

To summarize, we can represent our matrix of interlinked dots as a densely connected network that is 
gradually thinned out by successive fi lteringÑ i.e., by a sequence of matrix multiplications that reflect the 
selective influence of k, v, and t. Such a network can then be made to behave as a connectionist 
computational model in which transactions now look like the correlated fi rings of neurons. 
3.3 COMPUTATIONAL STRATEGIES 

In moving from possible to probable worlds via plausible worlds one confronts the problem of 
computational overload. How does one deal with it? The computational strategies for dealing with such 
overload will differ in each step. Two such strategies have been established over the past thirty years: Serial 
and parallel computing. They can be made to work in tandem. Taking each in turn: 
Serial Computi ng 

A serial computer (SC) uses a Òtop-downÓ process that takes symbolic material as its input, that is, data 
that have already been processed into information in the form of symbolic patterns. It emits symbolic 
material as its output after having submitted it to a set of well-defined operations. A sophisticated example 
of such a process is structural equation modeling (SEM) (Kaplan, 2000), illustrated in Figure 4: 

1. For those familiar with questionnaire design, our text-message terms correspond to scale items that act as inputs; our pattern 
elementsÑ part of a pattern-structureÑ correspond to those variables that make up the theoretical explanatory structure. The 
dependent variables get ÒchunkedÓ into prospective Òtraining modelsÓ that, when finalized, will constitute inputs for the neural 
net model. In Figure 4a, the k-contexts show text messages getting processed and filtered into a number of candidate dependent 
variables. In Figure 4b, the v-vantage point further fi lter these ÒplausibleÓ patterns, with some now becoming more dominant; 
Figure 4c shows the fi ltering effects of the t-time periods now, generating one or two pattern elements that now become 
plausible training models for parallel processing by the neural net. 
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2. In the SEM, text messages are first fi ltered by the context in which different GNW members find themselves, then by 
vantage point provided by individual GNW members, and finally over successive time periods. The program starts with 
specified contexts, such as: terrorists, cults, rebels, pandemic disease indicators, new technological elements, etc. Or, it may 
find contexts as it analyses messages. As texts are passed through k-, v-, and t-filters, the emerging candidate patterns become 
fewer and more focused. Through successive iterations, the SEM provides ever better training patterns to the neural net parallel 
processor.  
3. The objective of the SEM computation is to reduce candidate patterns generated by countless possible input data/patterns. 

<<< Insert Figure 4 about here >>> 

Parallel Computing 
A Parallel processor (PP) or connectionist computer uses a Òbottom-upÓ process designed to deal with 

sub-symbolic material as its inputs. The neural network processor (Hassoun 1995) depicted in Figure 5 is a 
typical example. By processing this material through a set of Òhidden layers,Ó the PP generates plausible 
patterns as its outputs. Through successive iterations, these eventually coagulate in to probable and 
therefore actionable hypotheses. In order to find plausible patterns more rapidly, PPs are often given a 
Òtraining patternÓ against which to test those that they generate for goodness-of-fi t. The training patterns act 
as ÒBayesian priorsÓ which, though a series of iterations, get gradually updated. Where do such patterns 
come from? In our case, the SC provides them:  

1. Our PP is a neural net that takes a ÒChunkedÓ output from the SEM as a temporary training pattern. It keeps adjusting its 
Òhidden variablesÓ in an attempt to achieve a goodness-of-fit between the patterns that it generates and those it has received as 
inputs. Initially it achieves a number of plausible fit and then later a very few probable fit. Its ÒBayesian updatesÓ generate the 
best matches with the training patterns (the Chunks) produced by the SEM. Eventually they become identifiable actionable 
patterns for reaching back into the real world to uncover the terrorist Òdots.Ó 

2. The objective of the neural net computation is to find the few relevant terrorist dot-links from among all those that match 
the training pattern.  

<<< Insert Figure 5 about here >>> 
As already suggested, if it is to act as an efficient pattern processor, a PP requires the guidance of 

training patterns. The diffi culty is that training patterns themselves need to get updated dynamically as time 
progresses in response to new text message inputsÑ the world does not come to a halt while we try to 
figure it out! The PP and SC therefore have to work in tandem, as depicted in Figure 6 in order to achieve 
convergence on some increasingly probable pattern. In our scheme, then, working forward through t-time 
periods, the SC finds the few key patterns from among the trillions of possible ones that can act as training 
models for a PP. The latter, working backward in time, and drawing on all the dot-links provided by the 
GNW, can now find the few key dots-links that generate the most probable and hence actionable pattern.  

<<< Insert Figure 6 about here >>> 
So far, we have described the computational process in the abstract. How is it going to be made to work 

in practice? Beyond registering a few beeper signals, a purely human system, on its own, would appear to 
be incapable of rising to the pattern-processing task we have described. Nor, on its own, could our SC and 
our PP, even working in tandem: the number of Òtraining patternsÓ required to initiate the computation is 
itself still far too large, varied, complex, and changeable. No one pattern of interlinked dots could be 
credibly selected in advance. What we need to do is to combine the remarkable pattern-processing skills of 
human agents with the data-processing capacities of computers, a hybrid socio-computational approach 
involving Global Neighborhood Watchers equipped with detectors, beepers, cell phones, etc., providing 
inputsÑ both dots and patterns of dotsÑ to the two computational processing components described above: 
!  A socially distributed network (SDN) of Neighborhood Watchers, with beepers, cell phones, text-messaging capability, and 

cell-phone-based photography, each providing Òdot-vectorÓ inputs to serial and parallel computing processes. 

!  The SDN first provides inputs for a serial computer implementing a structural equation model (SEM). This evolves an optimal 
mix of candidate training patterns that improve over time as the SEM cycles through the k, v, t corroboration processes and as 
dot-vector inputs get contextually enriched and updated. 

!  The PP is ÒtrainedÓ over time to uncover dot-links comprising the most actionable patternsÑ in our case patterns generated by 
a local human interpretation of Òdot-vectorsÓ provided by beepers, situational contexts, and other input data. The integration of 
people, sensors, beepers, and cell phones creates a socio/computational device that harnesses a human beingÕs natural pattern 
recognition and sense-making abilities to the data processing and transmission capabilities of sensors, beepers, etc., and then 
to the high-speed data processing capabilities of the NCTC computer.  
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!  The cycling of the SEM between continually improving contextually enriched text messages, improved temporary training 
patterns (TTPs), and the re-contacting of GNW members so as to further corroborate what they are seeing and interpreting, 
eventually results in highly probable training patterns for the PP to search for. 

!  The SDN essentially keeps looking for key interlinked dot-vectors, even as its training patterns are being constantly updated 
by the SEM. 

!  These processes result in the timely reduction of trill ions of possible patterns down to a manageable number of interlinked dot-
vectorsÑ i.e., patternsÑ and an identification of the generating dots, that is in our example, the terrorists-relevant dots. 

4 DETAILING THE SOCIO/COMPUTATIONAL PROCESS USING A TEST 
SCENARIO 

By passing them through k, v, and t fi lters, the SEM cycles the continuously upgraded inputs being 
received (beeper signals, text messages, photos, conversations, etc.) in order to help the PP to select out the 
key links (and dots) from among the trillions of possible patternsÑ i.e., patterns that have coherence, can be 
recognized, and result in actionable dot connections. A further development of our subway scenario will 
show how this works. To save space we use a number of acronyms. They are defined in the box below: 

Glossary  of Acronyms 

GNW Global Neighborhood Watch SDN Socially distributed  network 

NCTC National Counter-Terrorism Center SEM Structural equation model 

PP Parallel processor STMs Short text messages 

SC Serial computer TTPs Temporary training pattern 

4.1 STAGE ONE: k-CONTEXTS AND POSSIBLE WORLDS 
The city of Washington is in Condition Red. ÒChatterÓ from here and there around the world has accumulated 
recently suggesting that a possible terrorist action may be aimed somewhere in the city, involving either the 
explosion of a dirty nuclear bomb, or an anthrax or sarin-gas attack. No one knows which. There is some 
reason to believe that some of the chatter may also be purposefully misleading. A number of years back, 
however, throughout the US and in a number of other countries, GNW organizations were created, each 
member carrying a bio-chemical/radiation detection device, a beeper, and a cell phone with photo capabilities. 
Washington is a large city and the Washington chapter of GNW has several thousand members anyone of 
whom can also be contacted via the network.  

The subway train on which you are riding is now about ten minutes from Union Station. Riding with you on 
the train are other GNW members on their way to work, going shopping, etc. Triggered by a chemical sensor, 
the beeper that you are carrying has just gone off and sent a signal to the NCTC Computer that stores it 
temporarily. A couple stops later, Gillian and VeronicaÑ the former, a GNW memberÑ enter the other end of 
your car whereupon GillianÕs beeper goes off (see Introduction).  

When two or more beepersÑ i.e., dotsÑ go off at the same time, a correlation is established. Does it 
suggest a possible pattern?  
!  Most of the time, the beepers go off here and there in a random fashion. In most instances, no inter-dot connections are 

implied by such false positives. 

!  If the triggering of two beepers more or less coincidesÑ say caused by the action of a chemical sensorÑ then the signals 
automatically get registered in the Computer. An agent located at the NCTC can then communicate directly via short text 
messaging (STM) with the GNW members wearing the beepers through their cell phones or it can alert a higher-level agent, 
who then ÒconferenceÓ calls both of them. 

!  At this point the exploration of possible patterns is initiated. The GNW members in the train look around the cars they are in. 
One sees a man and woman with a baby carriage. The man has a ÒMediterraneanÓ look. The NCTC agent asks the GNW 
members to get nearer; the beeper signals from their detectors get stronger. 

!  The signals emitted by the various beepers all get registered in the NCTCÕs Computer. These messages could be automatic, 
having been triggered by the beepers, or they could be human-activated messages transmitted via a cell phone. The latter could 
be verbal, with verbal word recognition, STMs with computational text recognition, or photos sent to a graphic recognition 
processor in the Computer. 

Only possible patterns (some subset of possibly connected input signals) are generated at this stage. In 
this case, two beepers (dots) fi ring in a subway car initiate a pattern generation process between them. This 
instance of correlation between fi ring beepers need not be a purely local affair. It could extend to 
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international locations such as a garden in Perak (Malaysia), a Mosque in London, SingaporeÕs Changi 
Airport, a school playground in Karachi, or a casino in Macau. No coherent storyÑ i.e., patternÑ can yet 
account for these correlated beeper fi rings. That is, the pattern cannot yet be recognized. A huge number of 
possible candidate input patterns, therefore, are in need of processing. The vast majority of them will get 
eliminated when passed through k-context fi lters.  

When it can correlate over space and timeÑ if only weaklyÑ the beeper signals that it receives, the SC 
initiates a top-down process. The next step is to automatically call back the relevant GNW members and 
get them to briefly describe the different contexts in which the beeper signals were emitted. Pattern 
recognition now becomes both a local and a human affair. GNW members can communicate verbally with 
an NCTC agent or via STMs to the SEMÑ located in the Computer. The contextual information received at 
the NCTCÕs Computer is then associated with keywords relevant to the inputs being received. 
4.2 STAGE TWO: v-VANTAGE POINTS AND PLAUSIBLE WORLDS 

Beepers going off at random here and there can, for the most part, be ignored. But if several go off in 
some correlated fashion, then keywords can be derived from the diff erent vantage points of GNW members 
to guide further data processing and interpretation. In this way patterns become more plausible: 
!  The NCTC agent calls the GNW members whose beepers initiated the process and asks them to describe in some detail what 

they see. In this specific case, the agent then alerts other GNW members who happen to be either on the subway train or in the 
vicinity of its destinationsÑ Union Station and the other stations the train is due to stop atÑ to become more alert and to 
converge toward these stations, etc. Given some corroborating overlap in the description of GNW members located at v-
vantage points, candidate input pattern elements are identified and processed. These are evolved in an iterative fashion 
through the continuing interaction of the NCTC agent and the SC on the one hand with the GNW members, the SDN, and PP 
on the other.  

!  Upon receiving beeper signals, the SEM is programmed to request text messages from GNW members using as many standard 
code words as possibleÑ i.e., Central Asian, young male, bearded, strange expression, box, suitcase, laptop, shopping bag, 
stroller, etc. The SEM is programmed, to rank these words against ZipfÕs (1949) power law ranking (which starts with: the, of, 
and, to, I, or, say, really, quality….)Ñ looking for frequently used words that are inconsistent with the power law ranking of 
frequency of use.  

!  Guided by the NCTC agent, the SEM keeps cycling through all incoming messages trying to tease out plausible connectionsÑ
pattern elementsÑ between them (a process depicted in Figure 6). The SEM then suggests suitable terms or labels, to ÒhelpÓ 
GNW members communicate the pattern(s) they see. Of course, the SEM should not be so ÒhelpfulÓ as to lead members to 
ÒseeÓ non-existent patterns. As the SEMÕs ÒexperienceÓ accumulates it gets better at suggesting appropriate termsÑ those 
learnt in earlier training exercises and that GNW members themselves would want to use. The socio/computational system Ñ
comprising GNW members, SDN, NCTC agents, SC, PP, and SEMÑ would earlier have participated in various pattern-
generating training exercises.  

As pattern elements emerge, get corroborated across sensors, GNW beepers, and v-vantage pointsÑ i.e., 
as dots get Òfilled inÓ and links are foundÑ candidate patterns begin to take shape. As pattern elements 
accumulate and get further defined, the nascent patterns gain in plausibility.  
4.3 STAGE THREE: t-TIME PERIODS AND PROBABLE WORLDS 

When two (or more) GNW inputs generate correlated keyword-and-context messages across t-time 
periods, the recurrence justifi es the formulation of probabilistically derived expectations. As more GNW 
members approach the vicinity of the subway train, the number of possible incoming inputs could well 
increase far beyond an NCTC agentÕs capacity to respond. Here is where SEM becomes especially useful. 
Increasingly plausible patterns recurring across t-time periods now produce temporary training patterns as 
inputs to the PP: 
!  At some point the SC runs Òblock modelÓ software2 to more efficiently abstract out training patterns from the inputs. Needless 

to say, the SEM needs some minimum number of inputs to get going. Via the abstracting process, redundant pattern elements 
begin to coagulate into candidate pattern elements that get integrated into meaningful Òwholes.Ó These the SEM consolidates 
into trial sets of pattern elements, Chunks, that are entered into the PP to serve as temporary training patterns (TTPs) for it.  

!  Each TTPÑ and there could be many of these instead of just one as with conventional neural net modelsÑ now acts as a 
template against which further inputs can be compared. An emergent pattern would grow in strength to the extent that its 
constituent elements matched the SDN-generated patterns that now define a TTP. The larger the number of spatio-temporal 
events that match a given TTP, the more probable it becomes. 

!  For each initial set of two (or more) inputs that end in a TTP, the recursive cycling ends when the most successively refined, 
and thus, most probable TTPs are fed back to the SDN for final checking. At this stage we have a TTP built up from the 



 

 

13 

 

various inputs emanating from interactions with situated GNW members. TTPs thus consist of probable patternsÑ alternative 
configurations of dots and links enjoying a high degree of corroboration. 

Stage Three ends with the emergence of a limited number of sequentially corroborated TTPs.  
4.4 STAGE FOUR: PATTERN MATCHING IN ACTUAL WORLDS 

TTPs are testable hypotheses. Sooner or later, nature will shows its hand and tests them. By this time, in 
our scenario we have potentially hundreds of GNW members converging on subway stations along the 
trainÕs route. They have generated a number of TTPs for the SEM to process as probable scenarios. Many 
of these diverge, but some converge to produce Chunks. 
!  While cycling through and refining TTPs, the SDN compares them and looks for Chunking opportunities.  

!  Chunks are defined by standard bio-taxonomic method: No single term is essential; mostÑ but not allÑ are included. 

!  TTPs, generate chunks in two ways: 

• From overlap with or corroboration by other TTPs. They gain credibility from redundancy and are now reduced in 
number. The block model abstracts and synthesizes multiple patterns into Chunks and the SEM now sends these out to 
GNW members for further corroboration/confirmation. 

• From the integration of new incoming recycled STMs providing further corroboration that individual l inks between dots 
constitute valid pattern elements. 

!  TTPs now either: (1) merge into a single Chunk; (2) are cast away as errors; (3) are maintained as alternative hypotheses.  

Here is where SEM ÒlogicÓ appears. SEMs ÒcomputeÓÑ that is, they pick selected pattern elements as 
inputs and modify their interrelationship thus producing structural variablesÑ so as to ultimately find the 
selection of data inputs and patterns that most accurately define the dependent variable (Chunk) to be 
predicted. Beeper signals, STMs, photos, and taped conversations are the pattern elements to be input. The 
actual patterns play the role of the ÒstructureÓ in the SEM. The inter-relationship of their components is 
constantly changing, just as independent and moderating variables change position in SEM modeling as 
correlations strengthen or weaken. The Chunks play the role of the dependent variable(s)Ñ as pattern 
elements are added or deleted and as structural elements (the TTPs) are rearranged into trial patterns, the 
Chunks become better defined. The SEM program cycles through the various pattern elements, TTPs, and 
Chunk constructions until one or more coherent Chunks emerge. First, following block model theory, the 
challenge is to represent the commonalities among the TTPs with the fewest Chunks. This results from 
abstracting out the more frequently reoccurring links across the population of patternsÑ the pattern(s) built 
from the dominant abstractions (those occurring in the most patterns) become Chunks (Wasserman & Faust 
1994). Second, in structural equation modeling (Kaplan 2000), the challenge is to maximize the correlation 
of independent variables (the TTPs arising from the STM terms) with emerging Chunks. Collapsing similar 
TTPs into a single Chunk accomplishes both.  

Chunks, the output of Stage Four, constitute inferences to the best explanation (Sklar 1995)Ñ
hypothetical patterns systematically evolved to train the PP in what to look for as it sifts through the vast 
number of dot-vectors supplied by all of the input signals. 
4.5 THE LEARNING CHALLENGE 

As AshbyÕs law implies, pattern generation needs to progress at a faster rate than the rate at which 
emergent events actually unfold. This requires expeditious learning. First, as GNW members become better 
trained to perform in SDNsÑ through the timely identifi cation and accurate description of contextÑ the 
speed of pattern corroboration, convergence, and validation achieved by the SC improves. There will now 
be less volatility of pattern elements as new inputs come in. Indeed, the reduction in volatility offers a good 
proxy measure of corroboration, convergence, and validation at work. Second, as the SC, through periodic 
practice drills, gets better at ÒinterpretingÓ and ÒassistingÓ GNW members, it will end up with fewer but 
more valid TTPs. These now become an increasingly sparse SEM ÒstructureÓ with fewer actual patterns 
(SEM variables), and stronger connections between pattern elements. Finally, as the SEM structure 
improves, the number of seemingly different Chunks decreases. These can now be tested against an 
unfolding realityÑ do they suggest a false alarm or do they foreshadow an attack on Union Station? Or 
some alternative target? 
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5 ORGANIZATIONAL IMPLICATIONS  
5.1 THE CHALLENGE OF INTELLIGENCE ASSESSMENT  

What are the organizational implications of the above analysis for intelligence services? As we saw, the 
quality of intelligence assessment was identifi ed as a major problem in post 9/11 analyses. Who does it? 
How is it managed?  Returning to our scenario, should the assessment of what is going onÑ i.e., pattern 
recognitionÑ be centralized in some distant offi ce, or should it be decentralized to locally ÒsituatedÓ 
agents? What if one was dealing with a train station in Peshawar (Pakistan) rather than Washington? And 
how fault-tolerant can such pattern recognition be? 

The new NCTC aims to bring all the analysts and spies working on counter-terrorism under a single 
authority. The hope is that the new reforms will help to Òfill in the dotsÓ more rapidly and accurately next 
time by promoting a better sharing of information among the expertsÑ so as to find more dots more 
quickly. Unfortunately, this proposal leaves intelligence assessmentÑ i.e., pattern recognitionÑ essentially 
undisturbed at the top of the hierarchy, and thus subject to the same problems of data overload and of  
fi ltering biases that we discussed earlier.  

Furthermore, putting the intelligence services under a single authority does nothing to remove the silo 
mentality that operates both within and between these services. While the 9/11 CommissionÕs Final Report 
describes the CIA, the FBI, and more than thirteen other intelligence units as Òcast-iron stovepipesÓ at the 
agency-level (p. 403), silos also exist within these agencies. The FBI, for example, already had one boss, 
and yet people from different parts of the organizationÑ its internal silosÑ didnÕt talk to each other (Posner 
2003). In effect, the Òstronger managementÓ that the Commission calls for to unify all the intelligence-
gathering agencies (p. 411), will simply replicate at a higher level the existing silo-creating management 
approaches existing at the CIA, NSA, FBI, DOD. And as we now know, the hierarchical structure of these 
agencies exacerbates rather than ameliorates the silo problem.   

By connecting GNW members directly to a new pattern-processing technology, and by taking advantage 
of thousands of Òopen sourceÓ information opportunities, our ÒdistributedÓ socio/computational approach 
gets around silo thinking. How? A hierarchical organization deploys information fi lters in such a way that 
information is extracted from data collected at the base and is then passed up to the next hierarchical level. 
That is, dots (data) collected at the base get ÒjoinedÓ or linked (information) by intelligence analysts in the 
middle of the hierarchy before being ÒassessedÓÑ i.e., wrought into patterns (actionable knowledge)Ñ at 
the top. The finer the lower level fi lters the slimmer and steeper the hierarchy, as depicted in stylized form 
in Figure 7a. By contrast, fi ltering for a distributed approach would produce an organizational structure 
looking more like Figure 7b. Whereas in Figure 7a, agents at the bottom eliminate dots at a rapid rate in 
order to limit the data processing load of those higher up the hierarchy, in Figure 7b, lower-level agents 
deploy a limited number of dots to generate a larger number of links and a vastly larger number of pattern 
elements requiring higher-level processing.  

<<< Insert  Figure 7 about here >>> 

The difference between the two figures reflects fundamentally different data processing strategies. In 
Figure 7a, relevant information is presumed to reside primarily in the mean of a data distribution. Under 
assumptions of a normal distribution and independent events, the variance is mostly treated as an error 
term, i.e., noise that has to be got rid of as quickly as possible. In Figure 7b, by contrast, relevant 
information is presumed to reside primarily in the varianceÑ independence of events and a normal 
distribution can no longer be assumed. This is the source of the combinatorial explosion that generates so 
many patterns for processing further up the hierarchy. In the 7b case a large amount of information-bearing 
data has to be moved up the hierarchy before anything useful can be extracted from it. Focusing on means 
is what intelligence services were acculturated to do during the Cold War when the enemy and its possible 
range of behaviors were relatively well known and it was relatively easy to tell what was data and what was 
noise. As Thomas Kean (2004), the Chairman of the 9/11 Commission observes, however, the national 
security bureaucracy is still stuck in the Cold War time warp. In a post-cold war world of asymmetric 
threats in which small causes can have disproportionately large effects, intelligence services must learn to 
focus on information-bearing variances as much as on means (Gleick 1987, Andriani & McKelvey 2004). 
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Clearly the volume of data processing implied by Figure 7b is many times larger than that implied by 
Figure 7a. Too large, we believe, to be effectively processed by any traditional organization or even a 
limited number of these such as the CIA, the FBI, Homeland Security, etc. The implication of Figure 7cÑ a 
superimposition of Figures 7a and 7bÑ is that the intelligence process needs to spread outside existing 
hierarchical organizations and take advantage of socially distributed computational methods (Prietula, 
Carley, & Gasser 1998). Furthermore, we now need to distinguish between traditional hierarchical data 
processing and socially distributed pattern processing. Whereas the former type of processing still leaves 
intelligence assessmentÑ i.e., pattern processingÑ exclusively in the hands of a few overloaded, higher-
level Òexperts,Ó the latter type distributes pattern processing activities across a much wider community, 
replacing the hierarchically locatedÑ and thus silo-residentÑ ÒexpertsÓ with the concept of a Global 
Neighborhood Watch (GNW) composed of ubiquitously located ordinary citizens. Assessment does not 
thereby disappear, but it now operates across different levels: at the lower levels of the hierarchy, 
meaningful patterns are intentionally generated and corroborated for subsequent selection and processing; 
at higher levelsÑ possibly that of the NCTCÑ the most promising of these are actually put into play and fed 
back to the lower levels in an interactive fashion. The implication of our schemeÑ and what our scenario 
builds uponÑ is that the NCTC needs to involve many more stakeholders than existing intelligence services. 
But to avoid information overload it also needs a way of organizing that is designed to take advantage of 
our proposed socio/computational technology.  
5.2 WHO IS MY NEIGHBOR?  

A culture that supports distributed pattern processing differs signifi cantly from one that supports 
sequential data processing alone. In our approach, GNW members become Òcoalitions of the watchful.Ó 
Intelligence gathering, checking, corroborating, and contextually enriching, now become the business of 
citizens everywhere, as well as of Òsilo-fi lledÓ government agencies. Our GNW concept can be configured 
differently for different missions: 
!  Watch organizations can spread across the entire United States and beyondÑ i.e., to US citizens abroad, to green-card carriers 

who travel, and, via foreign governments, to foreign nationals; 

!  GNWs may be put through training exercises, be nationally cognizant, be focused on local hot-spots, be relatively easily 
reequipped, have equipment more easily maintained, upgraded, etc.; 

!  GNWs can be rapidly activated and deployed within and around metropolitan areas. In their capacity as employees, they can 
be moved in and out of specific sites such as nuclear power plants, container unloading docks, airports, subways, government 
buildings, and vulnerable office buildings; 

The pre-9/11 FBI story (Posner 2003, Anonymous 2004) illustrates the importance of having numerous 
ÒagentsÓ actively exploring the vast number of terrorist-relevant dot-vectors and then sharing their fi ndings. 
Graham (2004: 243Ð244) emphasizes the need to ÒÉex pand the number and orientation of voices that 
contribute to the intelligence process.Ó He also says Òthe intelligence communityÉn eeds to be more 
amenable to the use of intelligence collected from open sourcesÓ (our italics). We know from recent 
experience that existing Neighborhood Watch organizations, the ultimate Òopen source,Ó contribute 
signifi cantly to crime reduction. Could similar citizen-based organizations help to contain the terrorist 
threat?  

The GNW concept, however, is not without drawbacks. First, it requires ordinary citizens to take on the 
role of secret agents and to snoop on other citizens neighborsÑ in churches, mosques, schools, 
supermarkets, work places, transportation systems, and the like. Thus, each member of a GNW scheme 
spies on those around him/her. Since Neighborhood Watches exist in many urban neighborhoods, citizens 
are obviously willing to play this role to further protect their children and neighborhoods. 

Second, diverse ethnic, religious, work, and educational groups could come under pressure to help make 
the U.S. or their city safer by joining the local GNW organizationÑ if only to demonstrate Òwhose side they 
are onÓÑ thus destroying the conceptÕs essentially voluntary character. Why is it important to maintain the 
schemeÕs voluntary character? The very concept of a Òneighborhood watchÓ scheme, invites the question: 
ÒWho is my neighbor?Ó In a rapidly globalizing world, the answer must be: ÒThe stranger that I have never 
met and who may be affected by my action.Ó To succeed, GNW has to become part of the struggle for 
Òhearts and mindsÓ of citizens everywhere. As the 9/11 CommissionÕs Vice Chairman, Lee Hamilton 
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(2004), pointed out, military action and heightened security will never be enough. He argues that the United 
States should promote Òan agenda of opportunityÓ in impoverished countries and join Òthe battle of ideasÓ 
so that those regions do not become incubators of future terroristsÑ as has Iraq. At present too many people 
outside the WestÑ and, as Gilles Keppel (2004) has recently stressed, a good many in the West itselfÑ
harbor more neighborly feelings towards Osama Bin Laden than towards those who live in the West and 
who espouse its values. In our scenario, we present GNW as a mostly local, domestic affair. Yet for the 
concept to really deliver, one needs to devise neighbor-generating policies across national and cultural 
boundaries. This, of course, is as much the province of foreign policy as of intelligence gathering 

6 CONCLUSION 
We have drawn upon AshbyÕs Law of Requisite Variety/Complexity (1956) to analyze the nature of the 

security challenges that nation states face in the 21st century. Under competitive conditions, rapid pattern 
recognition becomes a weapon in a cognitive arms race between adversariesÑ requisite complexity calls for 
the generation of adaptive responses in a timely fashion. We have shown that effective counter-terrorism 
requires a lot more than just Òfilling in the dots.Ó Given the trillions of possible patterns a few dots give rise 
to, the cognitive challenge of quickly reducing the vast complexity of externally emergent patterns far 
exceeds the organizational capacities of a few government agencies, no matter how well equipped these 
might be. As we have shown, in the real world the trade off between generating data and generating 
meaningful patterns is time-constrained. The need for rapid pattern recognition may thus set a limit to the 
amount of data that can usefully be collected and processed. This is a new problem that traditional 
technologies and ways of organizing were never designed to cope with. The policy implications of the 
above are that we need: 
!  Global Neighborhood Watch organizations offering ÒdistributedÓ pattern processing and corroboration activitiesÑ made 

possible by ubiquitous and mobile human agents equipped with portable detectors, beepers and cell phones, and 
communicating via STMs. These activities provide a basis for moving methodically from possible to probable knowledge via 
plausible knowledge. 

!  A centralized socio-computational technology that:  

• Uses structural equation (with block) modeling to reduce tril lions of candidate patterns down to an actionable few. These 
then serve as inputs to parallel processors in the form of successively updated training patterns; 

• Uses neural net parallel processing, driven by increasingly accurate training patterns, to focus searches through 
corroborated open-source information for relevant dot-links existing in the world as input dataÑ especially those that 
foreshadow some imminent security threat. 

!  Global Neighborhood Watch schemes built from local communities throughout the world and comprising a diversity of ethnic, 
religious, international, and other groups whose ÒwatchingÓ can be selectively activated when conditions warrant 3.  

Ours is an optimistic paper.  
As far back as 1945, in a classic paper entitled ÒThe Use of Knowledge in Society,Ó Friedrich Hayek 

showed how socially distributed processing could help citizens and organizations cope with a complex and 
fast-moving, nonlinear world. Even then, such parallel processing strategies were to be found in markets. In 
matters of intelligence, however, government agencies continue to operate exclusively through serialÑ and 
thus, hierarchicalÑ models of computation and organization (CIA, FBI, etc). The proposed solution of the 
9/11 CommissionÑ to create a new intelligence TsarÑ simply builds onto this traditional organizing 
strategy. The complexity of the security challenge suggests that these traditional approaches now need to be 
complemented by modern socio/computational data processing methods that integrate silicon- and carbon-
based agents in novel ways.  

We have demonstrated that Òjoining the dots,Ó whilst a problem, is not the problem. Finding the 
computational capability to process and corroborate trillions of possible patterns is the problem. New open-
source pattern processing technology will be needed to address it. Yet, since computational strategies are 
only effective if the underlying organizational capabilities required to implement them are in place, if one 
changes computational strategy, then, by implication, one needs to develop new organizational capabilities 
as well. Our proposed solution integrates new computational processes with new organizational ones. 
Taken together, they suggest that signifi cant organizational and cultural challenges loom if US intelligence 
agencies are ever to effi caciously anticipate and counteract modern terrorist threats. 
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ENDNOTES 

1 Alternatively or in addition, detectors could be permanently installed in key locationsÑ like subway cars, train 
depots, airports, nuclear facilities, container unloading areas, government buildings, etc.; the portable detectors would 
then corroborate and contextually enrich signals from the stationary detectors. 

2 Block model programs come out of network sociology. They abstract commonalities across multiple networks 
(Wasserman & Faust 1994).  

3 Clearly, intelligence services will be able to avail themselves of the socio-computational technology that we are 
describing here for their own purposes. How strongly they should then be integrated with the GNW membership 
remains an open and highly political question. 
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Figure 1:  The Agent-in-the-Wor ld 

Figure 2:  An Adaptation of the Ashby Space 
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Figure 3:  Phase Transitions in the Ashby Space 
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Figure 4: Pattern Filter ing via Ser ial Computing 
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Figure 6: Ser ial &  Parallel Processing Combined 
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Figure 7b: Pattern Processing Hierarchy 

Figure 7a: Traditional Data Processing Hierarchy 

Figure 7c: Data &  Pattern Processing Combined 


