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I begin by defining “faddism” as a highly popular, rapidly growing field of intellectual inquiry and practical application that ultimately becomes 
discredited because its basic tenets remain uncorroborated. The field of management practice is especially susceptible to fads because of the pressure from 
agents for new approaches and the enthusiasm with which management consultants put untested ideas into immediate practice. Complexity theory has already 
become the darling of the consultants as the latest in a long string of management fads, such as T-groups, quality circles, JIT inventories, and reengineering. 
Not only is the problem one of more vigorously conducting needed investigations following accepted standards of “justification logic.” The microstate basis of 
complexity theory, and the replacement of positivism by scientific realism and the semantic conception of theories complicates the problem of developing an 
organizationally relevant justification logic that is epistemologically sound. Because traditional positivist standards have been called into question and 
organization scientists are generally unaware of the newer epistemological trends, their applicability to the study of complexity in firms may not be obviously 
relevant. 

Complexity theory is first reviewed as a “bottom-up” science, with particular attention paid to the different kinds of complexity, complexity “at the edge of 
chaos,” the “critical values” that shift the complexity landscape, and the conditions giving rise to emergent structure. The role of stochastic microstates and 
agent-based stochastic computational, adaptive learning models is highlighted. Complexity theory aspects of firms are then considered. The bottom-up nature 
of modern organization science is then discussed. Postmodernist ontology supports viewing value chains in firms as comprised of stochastically idiosyncratic 
process event microstates. Given parallel organization and natural science ontological premises, late 20

th
 century natural science epistemological developments 

are posited as highly relevant to organization science. As a consequence, late 20
th

 century natural science epistemological advances are defined as relevant to 
organization science and organizational complexity theory. Given the parallel, scientific realism and the semantic conception apply to microstates in general, 
but especially to stochastically idiosyncratic process events in firms. Applied to organizational complexity theory, scientific realists would hold that 
organizational microstates are in fact “real” and that organizational theories can be developed that have heightened probabilities of truth value even though 
microstate entities may not be directly observable. 

The “model centered” characterization of science by the semantic conception epistemologists is then highlighted, with particular attention to the role of 
computational models in future organization science. Based on a rereading of scientific history, scientific activity is bifurcated into two research agendas: (1) 
Scientists develop theories that predict a model’s behavior—this satisfies the epistemological validity requirement of improving the truth of theories by 
enhancing the predictive capability of both model and theory; and (2) Scientists then test the model’s ability to accurately represent that portion of complex 
real-world phenomena within the scope of the given theory—this satisfies the ontological validity requirement that the model and theory accurately “refer” to 
empirical reality. A Guttman scale of essential criteria for effective normal science is developed. 

An approach for testing a key element of effective science is highlighted, based on using computational experiments to test theories. Agent-based adaptive 
learning models are highlighted. Two modeling approaches invented by Stewart Kauffman are used to illustrate how computational models might be used 
testing a complexity theory of firms. Random Boolean network models focus on emergent structure, critical values of adaptive tension, and the identification of 
ordered, complex, and chaotic regimes. Kauffman’s NK[C] model focuses on the extent to which complexity effects might thwart selectionist effects in firms.  
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1 INTRODUCTION 
I begin by defining “faddism” as a highly popular, 

rapidly growing field of intellectual inquiry and practical 
application that ultimately becomes discredited because its 
basic tenets remain uncorroborated by a progression of 
research investigations meeting accepted epistemological 
standards of justification logic. The primary problem this 
paper tackles is: How to raise the “complexity theory of 
firms” up to a satisfactory level of scientific credibility? A 
prior problem is: What are the standards of scientific 
credibility given that positivism has been abandoned? 
More technically, How to truth-test the metaphysical 
nature of microstates? This issue is elaborated in Section 
2. 

The problem of questionable scientific standards in 
organization science is not limited to complexity theory 
applications (Pfeffer 1993, McKelvey 1997b). 
Nevertheless, the application of complexity theory to firms 
offers another opportunity to consider various 
epistemological ramifications. The problem is exacerbated 
because complexity theory’s already strong showing in the 
physical and life sciences could be emasculated as it is 
translated into an organizational context. Furthermore, the 

problem takes on a sense of urgency since (1) complexity 
theory appears on its face to be an important addition to 
organization science; (2) it is already faddishly applied in a 
growing popular press and by consulting firms; and (3) its 
essential roots in stochastic microstates have so far been 
largely ignored. Thus, complexity theory shows all the 
earmarks characteristic of short-lived fads. 

In Section 3, I review complexity theory as a “bottom-
up” science, with particular attention paid to (1) the 
different kinds of complexity; (2) complexity “at the edge 
of chaos;” (3) “critical values” that shift complexity 
landscapes; (4) conditions giving rise to emergent 
structure and (5) adaptive landscapes. Next, I redefine the 
bottom-up nature of modern organizational value chain 
ontology in terms of stochastic microstates and agent-
based stochastic nonlinear computational adaptive learning 
models. Then I apply the critical value aspects of 
complexity theory to firms, highlighting the metaphysical 
term problem, and raising the philosophical problem of 
truth-testing these kinds of theory terms. To develop the 
epistemology of complexity theory, I review the more 
credible postpositivist developments in normal science in 
Section 4. The logic underlying a “Guttman scale” of 
truth-testing standards is outlined. It starts with a brief 
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review of the positivist legacy and follows with sketches 
of scientific realism, the semantic conception of scientific 
theories, and evolutionary epistemology. The section ends 
with the Guttman scale of 7 criteria defining modern 
scientific activity. 

Finally, I present two modeling approaches in Section 
5 that illustrate how organizational complexity theorists 
may advance from the 2nd into the 5th level of the Guttman 
scale, that is, setting up the possibility for advancing 
experimental adequacy as defined by scientific realism and 
the semantic conception. Both model frameworks come 
from Stewart Kauffman’s 1993 book, The Origins of 
Order. I draw on both the random Boolean network and 
his NK[C] models. Together these models formalize the 
theory that the effects of adaptive tension critical values 
and complexity effects on natural selection combine to 
produce a Gaussian shape to organizational performance. I 
conclude that computational modeling approaches offer a 
basis for testing the experimental adequacy of scientific 
theories pertaining to complexity theory applications to 
firms. 

2 THE PHILOSOPHICAL 
PROBLEM OF MICROSTATES 

A fad is “a practice or interest followed for a time with 
exaggerated zeal” (Merriam Webster’s 1996). The field of 
management practice is especially susceptible to fads 
because of the pressure from managers for new approaches 
and the enthusiasm with which management consultants 
put untested organization science ideas into immediate 
practice. Complexity theory has already become the 
darling of the consultants as the latest in a long string of 
management fads, such as T-groups, job enrichment, OD, 
autonomous work groups, quality circles, JIT inventories, 
and reengineering. A fad ultimately becomes discredited 
because its basic tenets remain uncorroborated by a 
progression of research investigations meeting accepted 
epistemological standards of justification logic. Not only is 
the problem one of more vigorously conducting needed 
investigations following accepted standards of justification 
logic. The microstate basis of complexity theory, and the 
replacement of positivism1 by scientific realism and the 
semantic conception of theories complicates the problem 
of developing an organizationally relevant justification 
logic that is epistemologically sound because traditional 
positivist standards for truth-testing have been replaced. 
So, how to think about jacking the complexity theory of 
firms’ behavior up to the new plane of scientific 
credibility? 

The Problem. Consider the following theoretical 
explanation: When I let go of this glass gravity will cause 
it to hit the concrete floor and smash. Most of the entities 
to which the theoretical terms in this statement refer are 

detectable by the human senses. I feel when I let go. I 
see the glass fall. I can see and hear from a “ping” that it is 
glass and not plastic. I see and hear it hit the concrete 
floor. I can see and feel that the floor is concrete and not 
carpet. I can see the glass smash. These terms fit the 
standard of classical realism, that is Comtean positivism—
science should study that which can be readily sensed. 
After all, how can we know for sure what the truth of the 
matter is when the entities involved cannot be readily 
sensed? 

The entity, “gravity,” does not meet this standard. I 
cannot see, feel, touch, or smell the so-called force, 
gravity. Gravity is the kind of metaphysical property that 
the Vienna Circle positivists abhor (Suppe 1977). The 
attribution of gravity as a “cause” of the glass falling is 
also a metaphysical term. We assert the force, gravity, as 
cause and assume that if the glass falls it is because gravity 
caused it. No one in fact has seen, felt, or heard what it is 
exactly that causes the glass to be attracted by the mass of 
the earth. Consequently, logical positivists advocate an 
instrumental approach devoid of metaphysical terms. A 
good scientific result obtains if one produces a highly 
instrumentally reliable result of the kind: If A occurs, then 
B will occur. Since many scientists wish, in addition, to 
offer truthful explanations of “if A then B” events, and in 
fact do this anyway, no matter whether the terms in their 
explanations are real or metaphysical, the philosophical 
problem becomes: How to test the truth of a statement 
containing terms referring to entities that are 
unobservable to the human senses? 

Scientific terms actually come in three kinds, which 
Harré (1989) terms Realms: 

Realm 1 entities are currently observable [number of employees in a 
firm]; Realm 2 entities are currently unobservable but potentially 
detectable [process event networks in a firm]; and Realm 3 
(metaphysical) entities are beyond any possibility of observation by 
any conception of current science [psychological need, 
environmental uncertainty, underlying cause].  

As scientific instruments, such as telescopes, microscopes, 
and computer enhancements have emerged, philosophers 
have tried to separate what is surely metaphysical from 
that which seems metaphysical but which may be 
detectable with an instrument. Hacking (1981) explores 
this problem in a classic paper about what is detectable by 
an electron microscope and whether the image is real or 
metaphysical. Hacking’s question is, Do we have a right to 
believe the images shown by an electron microscope are 
depictions of real entities. Given appropriate corroboration 
that the images are not image errors produce by the 
electron microscope technology, he concludes that 
philosophers and scientists may validly agree that electron 
images depict Realm 1 entities. 

A second problem arises over such entities as the 
moons of Jupiter and quarks. Philosophers conclude that 
for things like Jupiter’s moons, even though from Earth 
they are detectable only via an instrument, if we were to 
travel to Jupiter or to the moons themselves we could see 
and feel them, hence they may be considered in Realm 1, 

                                                 
1  I use the term “positivism” as an informal reference to both logical 
positivism and logical empiricism—referred to as the Received View by 
Putnam (1962). 
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even though from Earth they are in Realm 2. Directly 
sensing quarks, on the other hand, would require humans 
to shrink down to the size of quarks. Since this is an 
impossibility, quarks remain as Realm 3 entities for 
philosophers, even though some scientists claim to be able 
to detect them (Gell-Mann 1994). I will refer to this as the 
‘quark problem’. As per the “Copenhagen Interpretation” 
(reviewed in Bitbol 1996) the detection of subatomic 
particles such as electrons and quarks (short of shrinking 
down to their size) is subject to Heisenberg’s Uncertainty 
Principle—the act of detection alters the state of the 
particle. Consequently such particles are beyond the 
possibility of ever being in Realm 2. 

Lower Bounds. Modern sciences in general, and 
complexity science in particular, face the special challenge 
that they increasingly study microstate particles that 
philosophers conclude are inalterable Realm 3 entities. In a 
comprehensive review of reductionism, Cohen and Stewart 
cite the root reductionist assumption: “Complexity at any 
given level is a consequence of the operation of relatively 
simple rules one level lower down” (1994, p. 219). In the 
reductionist view, sciences are arranged in hierarchical 
order: mathematics, physics, chemistry, biology, 
psychology, economics. In a classic article about what 
scientists actually do, Schwab (1960) points out that there 
are two kinds of reductionism: atomic reduction and 
molecular reduction. The Nobel Laureate physicist, 
Lederman, recently wrote a book titled The God Particle 
(1993). Writing about the basic particles involved in 
unified field theory, this book somewhat whimsically 
illustrates the atomic reductionist view that all 
explanations ultimately begin with nuclear particle wave 
functions. If anyone really believes particle wave functions 
could explain why Japanese cars are better than American 
ones, they hide it. For example, Cohen and Stewart show 
how unwieldy atomic reduction is for explaining the wave 
function of an entire cat or explaining the orbit of Mars 
(1994, p. 269, 281). 

Most sciences rather modestly work within a limited 
range of the total hierarchy. In molecular reductionism 
each science traditionally has a well defined lower cutoff, 
the molecular lower bound, where they stop trying to 
explain things and just make some initializing 
assumptions. Chemists do not explain nuclear particles; 
they just assume that molecules have various nuclei and 
electron rings and then they go about their explanations of 
chemical bonding and so forth. Biologists do not explain 
the chemistry of nucleic acids; they just assume that 
nucleic acids consist of various chemical molecules and 
then they start to work explaining DNA base-pair 
sequencing, genes, chromosomes, proteins, cells, and so 
forth. 

The molecular lower bound may be viewed as a 
platform consisting of myriad microstates about which 
simplifying assumptions are made. These assumptions are 
instrumental conveniences allowing molecular 
reductionists to develop explanations of higher level 
phenomena without trying to explain complex individual 

microstate behaviors. For a given science, 
explanations attempt to explain complexity above the 
lower bound but not within or below it—some other 
science takes over at the lower bound. Sometimes a mature 
science eventually extends its explanatory territory into the 
lower bound, as in physicists’ unified field theory, 
molecular biology, or physiological psychology. 
Sociologists worry about being “psychologized”—their 
way of protecting their lower bound. 

These instrumental assumptions are of two 
fundamental kinds.2 
1. Uniform. Frequently microstates are assumed all alike. All quarks, 
oxygen molecules, rat DNA molecules, and neuron mitochondria, for 
example, are assumed identical. By using the “rational actor assumption” 
that all individuals attempt to achieve constrained maximization (Hogarth 
and Reder (1987), economists instrumentally treat all people as identical 
and then they go about their work of trying to explain the behavior of 
aggregate economic systems (though each individual’s indifference curve 
might be unique, they are all treated as perfectly rational). Following this 
logic, process event microstates for purchasing the best notebook 
computer would be assumed uniform across all firms. 
2. Stochastic. Microstates are assumed to behave randomly—there is 
no underlying uniformity. Boltzmann suggested that physicists should 
assume all particles in solids like metal or glass vibrate or move 
randomly. There is no proof of this as yet, they just assume it. Gas 
particles in a pressure vessel are assumed to have random trajectories on a 
particle by particle basis. Epidemiologists assume that malaria mosquitoes 
choose victims randomly, though it is possible that mosquitoes see it 
differently. Biologists assume that faults in a particular DNA sequence 
occur randomly, or that cell mutations are random. von Mises terms this 
‘case probability’—”we know, with regard to a particular event, some of 
the factors which determine its outcome; but there are other determining 
factors about which we know nothing” (1963, p. 110). Thus, process 
event microstates for producing a competitive notebook computer would 
be assumed to exhibit random variation in all firms. 

As long as microstates are assumed uniform or 
stochastic-and-turned-“exact”-via-statistical-mechanics, 
scientists do not include microstate entities in their 
explanations and thus the quark problem is avoided. But as 
scientists enter their lower bound and directly include 
microstates as part of scientific explanation statements, 
then the quark problem emerges. Complexity theory is 
referred to as a “bottom up science” (Epstein and Axtell 
1996). Microstates are neither written off as “uniform” nor 
is their nonlinear stochasticity reduced to “exactness” via 
statistical mechanics. To translate the quark problem into 
the context of complexity science applied to firms, I first 
briefly review enough of complexity theory to be able to 
state a couple key “if A then B” statements, and then 
translate these into the organizational context. 

                                                 
2  I will ignore a third variant, statistical fluctuation (Brody 1993), which 
is really the uniform assumption but with an accommodation for 
measurement and other random error that might obscure uniformity. 
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3 THE “BOTTOM-UP” THEORY 
OF FIRMS 

The purpose of this Section is to illustrate how the 
philosophical problem concerning metaphysical entities 
and possible truth-tests plays out when complexity theory 
is applied to firms. Complexity theory has its roots in 
stochastic idiosyncratic nonlinear microstates. These work 
to put a peculiar spin on the problem. My discussion of 
weather and biological applications identifies two different 
truth-test problems stemming from the “Realmness” of 
complexity entities in a couple example theoretical 
propositions. My application of complexity theory to firms 
shows that both problems are present. 

3.1 COMPLEXITY THEORY AS BOTTOM-
UP SCIENCE 

More so at the Santa Fe Institute for Complexity 
Sciences than in Europe (compare Nicolis and Prigogine 
1989 with Kauffman 1993, for example), the nature of the 
stochastic idiosyncratic nonlinear microstate “soup” from 
which structure emerges has led to an emphasis on 
computational modeling as opposed to closed form 
solutions. In my brief review of complexity theory I draw 
on both a rather standard application, weather systems, and 
computational models of biological adaptive landscapes. 
This seems appropriate in as much that organizational 
applications of complexity theory have been more of the 
computational modeling kind. 

3.1.1 COMPLEXITY THEORY 
The traditional way sciences have dealt with the 

stochastic microstate assumption is with statistical 
mechanics (Gibbs 1902; Tolman 1938, Weidlich and Haag 
1983; Aoki 1996). In the second half of the 20th century 
complexity theory has emerged as an alternative method of 
explaining phenomena given a stochastic microstate 
assumption. Over the past thirty-five years complexity 
theory has become a broad ranging subject that is 
appreciated in a variety of ways, illustrated more or less in 
the books by Nicolis and Prigogine (1989), Cowan, Pines, 
and Meltzer (1994), Favre et al. (1995), Belew and 
Mitchell (1996), and Arthur, Durlauf, and Lane (1997). 
My rather narrow treatment here focuses on emergent 
dissipative structures, adaptive landscapes, critical values, 
and agent-based computational modeling. 

The study of ‘complex adaptive systems’ has become 
the ultimate interdisciplinary science (Anderson, Arrow, 
and Pines, 1988; Cowan, Pines, and Meltzer, 1994), 
focusing its modeling activities on how microstate events, 
whether particles, molecules, genes, neurons, human 
agents, or firms, self-organize into emergent aggregate 
structure. Also becoming important is the focus on 
“critical values” determining when a system shifts from 
being explainable by the simple rules of Newtonian 
science, to having self-organizing capability, to behaving 
chaotically (Cramer, 1993). Self-organizing creates 
dissipative structures. In the following subsections I divide 

complexity theory into, (1) emergent dissipative 
structures; (2) critical value effects; and (3) complexity 
effects on adaptive landscapes. 
3.1.1.1 Emergent Dissipative Structures 

Complexity theory departs from classical Newtonian 
deterministic laws about the conservation of motion and 
conservation of energy as represented by the 1st law of 
thermodynamics. Given the 2nd law of thermodynamics, 
that all ordered states eventually dissipate (via entropy) 
into disordered states, complexity theory emphasizes 
dissipative dynamical systems created or maintained by 
negentropy and eroded by entropy (Nicolis and Prigogine 
1989, Mainzer 1994). Negentropic effects that create or 
maintain order in the form of new structure, and entropic 
(energy dissipation) order destroying effects within any 
structure, form the heart of complexity theory. Schrödinger 
(1944) coined negentropy to refer to energy importation. 

“[Newtonian] physics deals with an invented, 
simplified world. This is how it derives its strength, this is 
why it works so well” (Cohen and Stewart 1994, p. 12). 
This idealized view of physics mirrors the “semantic 
conception of theories” in modern philosophy of science 
(see Suppe 1977, 1989; McKelvey 1997b, in press-c). It is 
predicated on the belief that the Universe is 
“algorithmically compressible” into simple rule 
explanations (Barrow 1991, p. 15). But how do 
phenomena appear, absent the invented, idealized, 
simplified world of 18th century physics? Offering a view 
based on Kolmogorov’s ‘K-complexity’ theory 
(Kolmogorov 1965), Cramer (1993, p. 210) defines 
complexity “as the logarithm of the number of ways that a 
system can manifest itself or as the logarithm of the 
number of possible states of the system: K = log N, where 
K is the complexity and N is the number of possible, 
distinguishable states.” For a parallel view of the 
“algorithmic information content” of complex bit strings 
see Gell-Mann (1994, Ch. 2). Cramer then identifies three 
levels of complexity, depending on how much information 
is necessary to describe the complexity. These are defined 
in Table 1a. 

> > > Insert Table 1 about here < < < 
Complexity theorists define systems in the critical 

complexity category as being in a state “far from 
equilibrium” (Prigogine and Stengers 1984). The key 
question becomes, What keeps emergent structures in 
states of equilibrium far above entropy, that is, in states 
counter to the 2nd law of thermodynamics? Prigogine and 
colleagues observe that energy importing, self-organizing, 
open systems create structures that in the first instance 
increase negentropy, but nevertheless ever after become 
sites of energy or order dissipation, thereby accounting to 
the 2nd law. Consequently they are labeled ‘dissipative 
structures’ because they are the sites where imported 
energy is dissipated. If energy ceases to be imported, the 
dissipative structures themselves eventually cease to exist. 
Negentropy may occur from adding energy or simply by 
dividing (finite) structures (Cohen and Stewart 1994, 
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3.1.1.2 Critical Value Dynamics Eigen and Winkler 1981). Entropy occurs simply from the 
merging of structures. Thus, despite the wishful 
aspirations of Wall Street gurus and CEOs, mergers and 
acquisitions are mostly entropic, a classic example being 
the assimilation of Getty Oil into Texaco. 

Nicolis and Prigogine (1989, Ch. 1) offer an overview 
of the function of critical values in natural science. As an 
example, consider the life-cycle of an atmospheric storm 
cell. The level of adaptive tension setting up the heat 
convection dynamics in a weather system is defined by the 
difference between the warm-to-hot surface of the earth 
and the cold upper atmosphere. At a low level of adaptive 
tension heat is slowly transferred from air molecule to air 
molecule via conduction. Energetic (heated) molecules at 
the surface more rapidly collide with molecules just above 
the surface and thereby transfer their heat energy to the 
colder less energetic molecules—but the molecules stay in 
their local area just banging around with each other. If the 
adaptive tension increases sufficiently, to the first critical 
value, some mass of air molecules, having become 
collectively “lighter” than other molecules, will start rising 
toward the upper atmosphere in bulk, thus setting up a 
convection current. At this critical value clear air 
turbulence appears and if the rising bulk of air is 
sufficiently moist, it will appear visible as clouds as it 
reaches the cooler upper atmosphere. The emergent “bulk 
air current” is classed as an emergent structure by 
complexity theorists. If the adaptive tension between 
surface and upper atmosphere increases still further, the 
structures quite predictably develop as thunderstorms. 
Examples of other kinds of emergent structures appear in 
physics, chemistry, biology and other natural sciences. 
Thunderstorms may be treated as isolated physical 
structures and are scientifically studied via scientific realist 
epistemology and the analytical mechanics of Newtonian 
science. In Prigogine’s terminology (Nicolis and Prigogine 
(1989, Ch. 2), the storm cells are dissipative structures 
occurring as the result of negentropy—they are created by 
the energy differential between hot and cold air and they 
serve to dissipate the energy of the hot surface air into the 
cold upper atmosphere. This accomplished, they dissipate 
to the point of disappearance.  

Self-organized dissipative structures may exhibit two 
key behaviors: persistence and nonlinearity. As to 
persistence, following Eigen’s work on autocatalytic 
hypercycles (Eigen and Schuster 1979), Depew and Weber 
observe that “the most effective way of building structure 
and dissipating entropy is by means of autocatalysis” 
(1995, p. 462; their italics) wherein some agent is 
produced that furthers the autocatalytic process (though 
remaining unchanged itself), thereby leading to a positive 
feedback ‘autocatalytic cycle’. Given their sensitivity to 
initial conditions, autocatalytic dissipative structures “are 
capable of generating dynamics that produce order, chaos, 
or complex organization at the edge of chaos” (1995, p. 
462). As to nonlinearity, Depew and Weber note further 
that the behavior of dissipative structures is nonlinear and 
tending to create marked explosions or crashes of 
structure, a situation far from the gradualism of Darwin. 
They also observe that when “…a system is constrained 
far from equilibrium [because of imported energy], 
macroscopic order arises not as a violation of the second 
law of thermodynamics but as a consequence of it” (1995, 
p. 464). This kind of order may appear as Cramer’s 
subcritical complexity. Thus self-organizing systems may 
come to stasis at any of the several levels of complexity. 
Complexity caused self-organizing structures with 
autocatalytic tendencies are now seen as a ubiquitous 
natural phenomenon (Cramer 1993, Kaye 1993, Mainzer 
1994, Favre et al. 1995), and hypothesized as broadly 
applicable to firms (Stacey 1992, 1995; Zimmerman and 
Hurst 1993, Levy 1994, Thiétart and Forgues 1995). 

If such emergent structures are in some way opposed to 
each other, they may themselves become tension creators 
giving rise to still other emergent self-organized structures, 
or possibly chaotic behavior. Thus, as the energy gradient 
increases (between a more entropic equilibrium state and 
the “far from equilibrium” state), and the stress of 
maintaining the negentropic state increases, there is a 
likelihood that the system will oscillate between the 
different states, thereby creating chaotic behavior. 
Oscillations that traditionally were taken as variance 
around an equilibrium point, now may be discovered to be 
oscillating around a strange attractor, or as bifurcated 
oscillations around two attractors, or if the stress increases 
beyond some additional limit, the chaotic behavior will 
change to stochastic behavior—no deterministic structure. 
Definitions of point, periodic, and strange attractors are 
given in Table 1b. By this line of reasoning, Nicolis and 
Prigogine (1989), Ulanowicz (1989), and Depew and 
Weber use thermodynamics to explain how the various 
states of complexity come to exist (see also Beck and 
Schlögl 1993). 

Suppose the adaptive tension between hot lower air 
and cold upper air were to increase further, perhaps by the 
conflation of warm moist air from the Gulf of Mexico and 
a cold air front coming down from Alaska, say over 
Kansas. At some point a second critical value is reached 
that defines “the edge of chaos,” a favorite phrase of 
complexity theorists. At this point the point attractor, or 
the limit cycle (pendulum) attractor of a conservative 
reversible deterministic system, is replaced by (1) two 
attractors causing the system to oscillate between the two, 
(2) possibly several attractors, or (3) a strange attractor in 
which the system is confined to a limited space by forces 
defining behavioral extremes (limits) rather than by the 
attraction of a central point. In a weather system chaotic 
emergent structures are things like tornadoes—the system 
oscillates between tornadic and nontornadic behavior. 

The key explanatory “if A then B” statements are as 
follows: 
1. The sun’s energy causes an adaptive tension (energy differential) 
between hot surface and upper atmosphere. 
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2. Below the first critical value, energy will dissipate via conduction 
among the kinetic gas particles (microstates). 
3. Above the first critical value of adaptive tension, one or more 
convection currents or dissipative structures (storm cells) will emerge to 
exist in a state far from equilibrium—at the edge of chaos. 
4. Above the second critical value the dissipative structures will pass 
from a state “at the edge of chaos” to a state governed by deterministic 
chaos and multiple basins of attraction—occasional tornadoes. 

Realm 1 terms (entities) are underlined. The entities to 
which most other terms apply are in principle detectable 
and thus in Realm 2. The implied cause in each statement 
falls into Realm 3. So, for this statement of complexity 
theory in the context of a weather system, most entities are 
not in Realm 3. They are thus in principle detectable and 
subject to empirical research and truth tests. The specific 
exact causal forces may never be truly detected and thus 
remain in Realm 3 as conjectures. For example, we cannot 
know exactly how adaptive tension causes some molecules 
to shift from convection to bulk movement. 
3.1.1.3 Adaptive Landscapes 

The notion of an adaptive landscape is attributed to 
Sewall Wright (1931, 1932). It is an element of his overall 
contribution to the Modern Synthesis in biology beginning 
circa 1930, in which theories of evolution, taxonomy, and 
genetics are merged. One aftermath of this synthesis has 
been a prolonged debate between population geneticists 
and paleontologists about who really should sit at the High 
Table of evolutionary biology, and thus who best can 
explain the evolution of species (Eldredge 1995). I 
mention this because I argue elsewhere (McKelvey 1997b) 
that microevolutionary theory at the process event level 
could very well have considerable explanatory power and 
consequently set up a similar kind of debate in 
organization science—between explanations based on 
idiosyncratic process microstates and complexity driven 
emergent structures vs. macro contextualist explanations 
based on ecological analysis. 

The landscape metaphor has subsequently retained 
considerable popularity among biologists, though in other 
disciplines sequence, configuration, or search space is 
preferred. An adaptive landscape has three elements: 1) A 
configuration space; 2) fitness functions; and 3) move 
rules which define the steps of the adaptive walk. As one 
approaches explanation from a “micro” level, the 
landscape or search space becomes central. In biology 
there is no question that the doyen’s of microevolutionary 
biology all draw on the landscape concept. As Macken and 
Stadler (1995) observe, Maynard Smith (1970) uses it to 
study protein evolution; Eigen (1971), Spiegelman (1971), 
and coworkers (Kramer et al. 1974) use it to investigate 
the in vitro evolution of RNA molecules; the Vienna group 
also uses it to study RNA adaptation (Fontana and 
Schuster 1987, Fontana, Schnabl, and Schuster 1989); and 
Kauffman and Weinberger (1989) introduce the idea of a 
tunable landscape in which complex interdependencies are 
allowed to affect fitness yields.  

Kauffman (1993, pp. 33–34) introduces a new wrinkle 
to fitness landscapes in that his landscapes have features 

causing variations in their ruggedness. Primarily, 
ruggedness is a function of the number of parts comprising 
the evolving organism, N, and the amount of 
interconnectedness among the parts, K (1993, pp. 40–54): 
1. When K = 0 the landscape appears as gently rolling ridges coming 
off a towering volcano—Kilimanjaro and surrounding plains. This 
landscape has one very high global optimum. Kauffman shows that the 
“correlation structure” of this landscape is high; the fitness value for one 
neighbor is highly similar to that of other neighbors, and that any move 
toward increased fitness will inexorably lead toward the global optimum. 

2. When K = N − 1, the landscape is very jagged—perhaps like the 
modest peaks, valleys, and ridges of the Alpine Dolomite landscape 
where there are many peaks and ridges and their sides are precipitous. 
This landscape is uncorrelated in that one kind of move in no way 
predicts what happens with some other move. 

3. As K increases from 0 to N − 1, the number of optima peaks 
increases, the level of precipitousness increases, the correlation among 
fitness moves decreases, and the height of the peaks decreases. 

As N and K increase, the number of fitness optima 
available to a player vastly increases, the level of fitness at 
any given optima diminishes so peaks are less valuable if 
attained, the predictability of finding a better than average 
fitness peak diminishes rapidly, and players more likely 
will be trapped on suboptimal fitness peaks. Kauffman 
holds that any selectionist progression toward properties 
that are rare in a coevolving system of entities may be 
overwhelmed by large numbers of mutations toward the 
statistically typical central tendencies of other properties 
comprising the population that are more numerous. Three 
forces may suppress selection (1993, p. 25): 
1. “Selection is simply too weak in the face of mutations to hold a 
population at small volumes of the ensemble which exhibit rare 
properties; hence typical properties are encountered instead.” 
2. “Even if selection is very strong, the population typically becomes 
trapped on suboptimal peaks which do not differ substantially from the 
average properties of the ensemble.” 
3. Each of the foregoing limitations on selection “become more 
powerful as the  complexity of the entities under selection increases” (his 
italics). 

In the face of weakened selection, the “spontaneous order” 
resulting from the more numerous “typical” characteristics 
of ensembles will “shine through”. “In short, this 
theme…states that much of the order in organisms may be 
spontaneous. Rather than reflecting selection’s successes, 
such order…may reflect selection’s failure” (1993, pp. 29–
30). 

Given a tunable landscape, Kauffman (1993) identifies 
two conditions when complexity effects may thwart 
selectionist effects as the root cause of order in biology: 
1. In a “correlated” landscape containing some clearly advantageous 
fitness peaks, if selection forces are weak and thus fail to hold members 
of a population high up on the peaks, the apparent order in the population 
is due to the typical properties of the majority of the population still 
spread around the valley. That is, “adapting systems exhibit order not 
because of selection but despite it” (1993, p. 35; his italics). 
2. In a “rugged” landscape, given that (a) as peaks proliferate they 
become less differentiated from the general landscape; (b) in precipitous 
rugged landscapes adaptive progression is trapped on the many 
suboptimal “local” peaks; and (c) even in the face of strong selection 
forces, the fittest members of the population exhibit characteristics little 
different from the entire population. 
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Kauffman labels these conditions “complexity 
catastrophes” because one or the other inevitably happens 
if the “complexity of the entities under selection 
increases.” Thus complexity imposes an upper bound on 
adaptive progression via selection “when the number of 
parts exceeds a critical value” (1993, p. 36). The 
“catastrophe” is designated as such because complexity 
acts to thwart the selectionist process, thereby stopping 
progression toward improved fitness. 

The bullets defining the catastrophe conditions 
introduce two concepts central to Kauffman’s thesis, 
“correlated” and “rugged” landscapes, which are also 
key determinants of his notion of tunable landscapes, and 
which form the key elements of the NK model. N 
represents the number of significant components 
comprising an adapting entity, such as a gene, 
chromosome, trait, or species, or in our case, number of 
process events, units, actors, firms, or generally the 
number of agents attempting to achieve higher fitness. K 
stands for the number of interdependencies among the 
agents; K can range from 0 to N−1. Thus, K is a measure 
of the complexity of interdependencies. Kauffman argues 
that K causes the landscape to buckle and deform with the 
result that it changes from a single dominant fitness peak 
at the K = 0 extreme to many low level peaks at the K = N
−1 extreme. Kauffman defines the K = 0 landscape as 
highly correlated whereas the K = N−1 landscape is highly 
rugged. Rugged landscapes contain many peaks and 
valleys, steep slopes, many suboptimal peaks, and offer a 
greater chance of an agent being trapped on a suboptimal 
peak. Note that suboptimal in a land of many low peaks 
may not be much less than a considerably flattened global 
optimum. 

Kauffman uses the NK model, a “spin glass” variant, 
to investigate the following kinds of questions: 1) How 
high are the fitness levels of local optima? 2) How many 
and how similar are local optima? 3) How long are the 
walks to local optima? 4) What is the rate at which the 
number of more fit variants along a walk diminishes? 5) 
How long a wait before an agent discovers a fitter variant? 
6) What sizes are the basins of attraction? Which is to ask, 
how many walks toward a particular peak from different 
starting points are possible? In total, these questions focus 
on the rate of adaptation and level of success likely on a 
particular landscape. With tunable landscapes one may ask 
how levels of complexity affect rates and levels of 
adaptive success by altering the ruggedness of the 
landscape. Kauffman’s applies the NK model in studies of 
fundamental biological questions pertaining to adaptive 
evolutionary rates in protein evolution, the crystallization 
theory of the origin of life, the origin of a connected 
metabolism, the formation of autocatalytic sets of RNA 
catalysts, and the evolution of genetic regulatory circuits. 
With the NK[C] model he uses cellular automata models to 
explore the distortion of landscapes due to micro level 

complexity effects on the coevolutionary dynamics 
between opponents, the complexity induced percolation3 
of emergent ecological structures, and complexity induced 
alterations of the landscape affecting the relative height of 
Nash equilibrium levels. 

Suppose we take for example the second of 
Kauffman’s two catastrophe explanations, which are of the 
“if A then B” kind: 

In a “rugged” landscape, given that (a) as peaks proliferate they 
become less differentiated from the general landscape; (b) in 
precipitous rugged landscapes adaptive progression is trapped on the 
many suboptimal “local” peaks; and (c) even in the face of strong 
selection forces, the fittest members of the population exhibit 
characteristics little different from the entire population. 

When a mutant gene becomes adopted by an organization, 
that is, in Kauffman’s terms gets copied by a nearest 
neighbor gene, what is copied could be a change in a base-
pair sequence which amounts to an amino acid alteration. 
Since these are chemical molecules, they are microstates 
but by the quark problem standard they are in Realm 2. 
Thus, one base-pair at a time, the entities—gene, base-
pairs, amino acids are all in Realm 2. But the rugged 
landscape of adaptive progression seems well beyond 
detection simply because of the number of idiosyncratic 
elements. The stretch of a DNA molecule that affects, say 
the length of a rabbit’s legs which allows it to outrun a 
fox, has many chromosomes, which have many genes, 
which have many base-pairs. Kauffman’s model 
landscapes are defined by up to 24 genes as “agents,” each 
of which may have interdependencies with other agents, 
leading to a maximum number of possible “one change 
neighbor” interdependencies that is over 16 million. A 
thousand real-life “agents” driving the mutation based 
development of just one part of a body over generations of 
offspring create an adaptive landscape so large as to be 
beyond detection. And the options of drawing on the 
uniformity assumption or the stochastic assumption 
reduced via statistical mechanics, are not available because 
the relevance of the landscape make sense only if the 
uniqueness of each “one-change neighbor” is preserved. I 
will refer to this as the ‘millions problem’. 

3.2 BOTTOM-UP ORGANIZATION 
SCIENCE 

3.2.1 DEFINING ORGANIZATIONAL PROCESS 
MICROSTATES 

A discussion of bottom-up organization science must 
define organizational microstates in addition to defining 
the nature of aggregate behavior. Particle models are 
models of microstates. For physicists, particles and 
microstates are one and the same—the microstates of 
physical matter are atomic particles and subparticles. For 
chemists and biologists, microstates are, respectively 

                                                 
3  An emergent structure is said to “percolate” when it stretches from one 
edge of a network lattice to another—top to bottom, left to right, etc. 
(Stauffer 1987b). 

 



Thwarting Faddism 8

molecules and biomolecules. For organization scientists, 
microstates are defined as discrete random behavioral 
process events. 

Mackenzie recognizes that in an organization 
[t]here are multiple events, chains of events, parallel events, 
exogenous events, and chains of process laws. In fact, an event is 
itself a special process. Furthermore, there exist hierarchies of 
events and process laws. There are sequences of events and process 
laws. The situation is not unlike the problem of having a Chinese 
puzzle of Chinese puzzles, in which opening one leads to the 
opening of others (1986, p. 47). 

If not individuals, what then are the organizational 
microstates? Decision theorists would likely pick 
decisions. Information theorists might pick information 
bits. I side with process theorists. Information bits could 
well be the microstates for decision science and electronic 
bytes may make good microstates for information 
science—but they are below the organizational lower 
bound—thus uninteresting to organization scientists. 

Later in his book Mackenzie describes processes that may 
be mutually causally interdependent. In his view, even 
smallish firms could have thousands of process event 
sequences (1986, p. 46). 

As process events, organizational microstates are 
obviously affected by adjacent events. But they are also 
affected by broader environmental factors. While virtually 
all organization theorists study processes—after all, 
organizations have been defined for decades as consisting 
of structure and process (Parsons 1960)—they tend to be 
somewhat vague about how and which process events are 
affected by external forces (Mackenzie 1986). An 
exception is Porter’s (1985) value chain approach, where 
what counts is determined directly by considering what 
activities are valuable for bringing revenue into the firm. 

A list of example process events at the microstate level 
are shown in Table 2. I think the manner in which these 
kinds of activities are exactly carried out from one day to 
another, or from one person to another, or in one 
organization or another, is uninteresting to most 
organization scientists. These kinds of process events are 
what I have in mind as “microstates” for organization 
science. They exist throughout organizations. 

>>>Insert Table 2 about here<<< 
Now, should we assume they are all uniform or 

random? Granted, some activities might be identical, such 
as automated processes controlled by computers—I will 
ignore these. Could the rest all be uniform? Would we 
expect all people on all loading docks to inspect pallets 
exactly the same way or all software response persons to 
open all calls exactly the same way? Probably not—
people, loading docks, product, software, customers, and 
so on, all differ. It is also clear from Table 2 that there are 
many kinds of process microstates, so process events are 
not uniform in this sense either. I think most organization 
scientists would not assume that all process events are 
uniform, so I rule out the uniformity assumption. 

Those taking the ‘resource-based view” of strategy 
also develop the relationship between internal process 
capabilities and a firms ability to generate rents, that is, 
revenues well in excess of marginal costs. These attempts 
to understand how resources internal to the firm act as 
sustainable sources of competitive advantage are reflected 
in such labels as the “resource based-view” (Wernerfelt 
1984), “core competence” (Prahalad and Hamel 1990), 
“strategic flexibilities” (Sanchez 1993), and “dynamic 
capabilities” (Teece, Pisano, and Schuen 1994).  

In Porter’s view, activities have value in attaining 
competitive advantage, if they are distinct or unique, just 
as in the resource-based view. Instead of using 
“idiosyncrasy,” Porter says, “value activities are the 
physically and technologically distinct activities a firm 
performs” and “a firm differentiates itself from its 
competitors when it provides something unique that is 
valuable to buyers beyond simply offering a low price…. 
Any value activity is a potential source of uniqueness” 
(1985, p. 38, 120; my emphases). Porter recognizes that 
even firms producing commodities may have unique 
activities (1985, p. 121). Both the resource-based view and 
Porterian schools of strategy now focus on idiosyncratic 
firm effects. In this view organizational microstates 
important for consideration are those that are part of the 
value chain activities and competencies that return value, 
that is, revenue, to the firm. Other microstate entities could 
be floating around in organizations, but they are not 
important to my analysis. 

Process theorists define processes as consisting of 
multiple events. Van de Ven (1992) notes that when a 
process as a black box or category is opened up it appears 
as a sequence of events. Abbott (1990) states “every 
process theory argues for patterned sequences of events” 
(p. 375). Mackenzie (1986, p. 45) defines a process as “a 
time dependent sequence of elements governed by a rule 
called a process law,” and as having five components 
(1986, p. 46): 

1. The entities involved in performing the process 
2. The elements used to describe the steps in a process 
3. The relationships between every pair of these elements 
4. The links to other processes, and 
5. The resource characteristics of the elements 

A process law “specifies the structure of the elements, 
the relationships between pairs of elements, and the links 
to other processes” and “a process is always linked to 
another, and a process is activated by an event” 
(Mackenzie 1986, p. 46). In his view an event “is a 
process that signals or sets off the transition from one 
process to another” (1986, p. 46–47). Mackenzie’s 
typology of task processes contains six hierarchical levels: 
activity, module, bundle, group, area, and macro-logic 
(1986: 52-56).  

Those studying aggregate firm behavior increasingly 
have difficulty holding to the traditional uniformity 
assumption about human behavior. Psychologists have 
studied individual differences in firms for decades (Staw 
1991). Experimental economists have found repeatedly 
that individuals seldom act as consistent rational actors 
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(Hogarth and Reder 1987; Camerer 1995). 
Phenomenologists, social constructionists, and interpretists 
have discovered that individual actors in firms have unique 
interpretations of the phenomenal world, unique 
attributions of causality to events surrounding them, and 
unique interpretations, social constructions, and 
sensemakings of others’ behaviors they observe 
(Silverman 1971, Burrell and Morgan 1979, Weick 1979, 
1995; Reed and Hughes 1992, Chia 1996). Although the 
effects of institutional contexts on organizational members 
are acknowledged (Zucker 1988, Scott 1995), and the 
effects of social pressure and information have a tendency 
to move members toward more uniform norms, values, and 
perceptions (Homans 1950), there are still strong forces 
remaining to steer people toward idiosyncratic behavior in 
organizations and the idiosyncratic conduct of 
organizational processes: 

1. Geographical locations and ecological contexts of firms are 
unique. 
2. CEOs and dominant coalitions in firms are unique—different 
people in different contexts. 
3. Individuals come to firms with unique family, educational, and 
experience histories. 
4. Emergent cultures of firms are unique. 
5. Firms seldom have totally overlapping supplier and customers, 
creating another source of unique influence on member behavior. 
6. Individual experiences within firms, over time, are unique, 
since each member is located uniquely in the firm, has different 
responsibilities, has different skills, and is surrounded by different 
people, all forming a unique interaction network. 
7. Specific firm process responsibilities—as carried out—are 
unique due to the unique supervisor-subordinate relationship, the 
unique interpretation an individual brings to the job, and the fact that 
each process event involves different materials and different 
involvements by other individuals. 

By this analysis, it appears that, at a very micro level, 
each process event/individual behavior combination in 
organizations may be assumed idiosyncratic. 

3.2.2 DEFINING ORGANIZATIONAL CRITICAL 
VALUES 

Critical Value Theory. To apply the critical value 
idea to firms, consider a small firm recently acquired by a 
larger firm. With a low level of adaptive tension—below 
the first critical value—in which existing management 
stays in place and little change is imposed by the acquiring 
firm, there would be little reason for people in the acquired 
firm to create new structures, though there might be 
“conduction” type changes in the sense that new ideas 
from the acquiring firm percolate slowly from one person 
adjacent in a network to another. If the acquiring firm 
raised adaptive tension by setting performance objectives 
calling for increased return on investment, more market 
share, etc., perhaps changing the top manager, but kept the 
tension below the second critical value, complexity theory 
predicts new structures will emerge that lead to better 
performance. 

Above the second critical value complexity theory 
predicts chaotic behavior. Suppose the acquiring firm 
changed several of the acquired firm’s top managers and 

sent in “MBA terrorists” to change quickly most of 
the management systems—new budgeting approaches, 
new information systems, new personnel procedures, 
promotion approaches and benefits packages, new 
production and marketing systems—and the acquired 
firm’s culture and day-to-day interaction patterns. In this 
circumstance two bifurcating attractors could emerge: one 
being an attractor for people trying to respond to the 
demands of the MBA terrorists and the other an attractor 
for people trying to resist change and hang onto the pre-
acquisition ways of doing business. 

In between the first and second critical values is the 
region complexity theorists refer to as the edge of chaos. It 
is also the region where Cohen and Stewart’s “emergent 
simplicity” concept prevails. Here, structures emerge to 
solve a firm’s adaptive tension problems. To use the storm 
cell metaphor, in this region the “heat conduction” of 
interpersonal dynamics between communicating 
individuals in a value chain network is insufficient to 
resolve the observed adaptive tension. As a result, the 
equivalent of organizational storm cells consisting of 
“bulk” adaptive work (heat) flows starts in the form of 
formal or informal emergent structures—new network 
formations, new informal or formal group activities, new 
departments, new entrepreneurial ventures, importation of 
new technologies and competencies then embedded within 
the new social or formal organizational structures, and so 
forth. These organizational structures are the emergent 
“simple rule” governed structures Cohen and Stewart 
discuss. Their emergence is caused by the contextual 
dynamics of adaptive response to changing environmental 
conditions. Having emerged, they generate work flows of 
a probabilistically predictable nature, as I describe below. 
For epistemological purposes, these structures may be 
explained using the simple rule epistemology of traditional 
normal science—prediction, generalization, falsification, 
nomic necessity, experiments, and so forth. As one may 
see, in this region there is the confluence of both 
contextual and reductionist forms of explanation. 

3.2.3 THE ENTITY REALMS OF 
ORGANIZATIONAL COMPLEXITY 
THEORY 

The Quark Problem. In my application of complexity 
theory to firms, both of the sets of statements from the 
complexity theory section are translated into 
organizational terms. The propositions drawn from the 
storm cell analogy are fairly easily restated in 
organizational terms. 
1. The corporation’s performance demands causes an adaptive tension 
(energy differential) between an SBU’s current practices and what is 
required by the acquiring firm. 
2. Below the first critical value, adaptive change may occur a some 
minimal level within the constraints of the existing SBU process 
(microstates) governed by its existing organizational culture and structure. 
3. Above the first critical value of adaptive tension, one or more 
dissipative structures (informal or formal groups or other organizing 
units) will emerge to exist in a state far from equilibrium. 
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4 MODERN PHILOSOPHY TO 
THE RESCUE 

4. Above the second critical value the dissipative structures will pass 
from a state at the edge of chaos to a state governed by deterministic 
chaos and multiple basins of attraction—bifurcated basins of attraction, 
one being the existing practices and the other being attempts to conform 
to the demands of the MBA terrorists sent down from corporate 
headquarters. 

In the course of a brief review of some recent 
developments in philosophy of science I show that there is 
a legacy to positivism that carries forward its emphasis on 
the necessity of laws based on underlying structures and 
experimentally produced findings—both of which protect 
against attempting to explain accidental regularities.4  
From scientific realism we draw the idea that Realm 
entitivity is independent of progress toward truth. And 
from the semantic conception of theories we derive the 
notion that scientific theories relate to models of idealized 
systems, not the complexity of real world phenomena. 
Since realist semantic conceptionists focus on model 
behavior the theoretical entities are necessarily in Realm 1. 
Finally, the realists’ emphasis of falliblist verisimilitude 
turns the search for truth on its head—instead of expecting 
to zero in on the exact truthful explanation, expectations 
focus on selectively eliminating the least truthful 
explanations. This Section sets up the last part of this 
paper, which holds that computational experiments, based 
on models tested for both experimental and ontological 
adequacy, provide a final basis of assuring that complexity 
theories of organizational phenomena are suitably truth-
tested. It concludes with a Guttman scale of scientific 
effectiveness criteria. 

On the one hand it appears that all the theory terms 
(entities) are in Realms 1 or 2. The process event 
microstates are behaviors and conversations among 
individuals and all these microstates are potentially 
observable—no complicated instruments, nothing far away 
like the moons of Jupiter, and nothing requiring shrinking 
like quarks. However interpretists (Weick 1979, 1995), 
ethnomethodologists, phenomenologists and radical 
humanists (Burrell and Morgan 1979), postpositivists 
(Lincoln 1985), and postmodernists (Burrell 1996, Chia 
1996) all observe that the very act of carrying out research 
in organizations sensitizes people and consequently has 
some probability of altering the nature of the process 
system or culture. This happens whether by participant 
observation, structured questionnaires, or interviews. This 
is not unlike the effect of Heisenberg’s Uncertainty 
Principle that gave rise to the Copenhagen Interpretation 
and the quark problem. Whereas physicists have the quark 
problem because they can’t shrink down to quark size and 
carry out detection at that level, in firms the Uncertainty 
Principle applies without shrinking—we are already at the 
same “size” level as process events. 

4.1.1 THE LEGACY OF THE RECEIVED VIEW The Millions Problem. In addition to the truth-test 
problem of the Uncertainty Principle, organization 
scientists also face the second problem—the one posed by 
the millions of idiosyncratic microstates. On their face, 
neither of the “complexity catastrophe” propositions 
suggested by Kauffman pose a realmness problem. The 
“agents” in this case shift from being genes or 
chromosomes to process participants in an organization. In 
terms of the NK framework, suppose each of 20 firms has 
N = 100, employees (agents), any one of whom has a 
routine that might be improved by copying an 
improvement discovered by some other agent. Since the 
combinatorial modeling space is defined as N (N–1) its size is 
the number 100 + 99 more zeros—a truly huge number. 
Even in a simple model representation an N = 24 results in 
an adaptive landscape space of over 16 million elements. 
Since people cannot readily “sense” multimillion element 
spaces, the adaptive landscapes, peaks, and rugged slopes 
in the Kauffman’s propositions appear well ensconced in 
the metaphysical Realm 3. 

How should organization scientists deal with the 
fundamental dilemma of science—How to conduct truth-
tests of theories, given that many of their constituent terms 
are unobservable and unmeasurable, seemingly unreal 
(Realm 3) terms, and thus beyond the direct first-hand 
sensory access of investigators? This dilemma clearly 
applies to organization science in that many organizational 
terms, such as legitimacy, control, bureaucracy, 
motivation, inertia, culture, effectiveness, environment, 
competition, complex, carrying capacity, learning, 
adaptation and the like, are clearly metaphysical concepts. 
In a previous paper (McKelvey 1997a) I note that 
positivism was a concerted effort by 20th century 
philosophers—post quantum and relativity theories—to 
resolve this dilemma. They built on Comtean positivism 
and classical realism, rejected Hagelian idealism, and 
defined positivism as the dominant reconstructed logic of 
the early 20th century. Despite years of attempts at fixing 
the logical structure of positivism its demise was sealed at 
the 1969 Illinois symposium and its epitaph written by In this Section I have progressed from the 

philosophical problem associated with (1) a simple 
proposition about a falling glass to (2) an application of 
microstate based complexity theory to (3) firms with a set 
of illustrative propositions from complexity theory and 
Kauffman’s NK framework wherein all entities are of 
Realm 3 either because of the quark problem or the 
millions problem. The question surely arises then of, How 
to carry out research that has some feasibility of truth-
testing when most entities in the relevant theoretical 
propositions are in the metaphysical Realm 3?  

                                                 
4  An accidental regularity is defined as an observed recurrence in real 
world phenomena that is not know to be the result of a law governing an 
underlying causal force.  The “sun rising” is a perceived accidental 
regularity since the sun does not actually rise, but rather the earth rotates 
on its axis. 
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Suppe (1977), who gives a detailed analysis of 
positivism’s logical shortcomings.5   

It is clear that positivism is now obsolete among 
modern philosophers of science (Rescher 1970, 1987; 
Devitt 1984, Nola 1988, Suppe 1989, Hunt 1991, de Regt 
1994, Aronson, Harré, and Way 1994). Nevertheless, the 
shibboleth of positivism lingers in economics (Blaug 1980, 
Redman 1991, Hausman 1992), organization science 
(Pfeffer 1982, 1993; Donaldson 1996, Burrell 1996), and 
strategy (Camerer 1985, Montgomery, Wernerfelt, and 
Balakrishnan 1989). It is still being used to separate “good 
normal science” from other presumably inferior 
approaches. Though the untenable elements of positivism 
have been abandoned, many aspects of its justification 
logic remain and have been carried over into scientific 
realism—to be discussed shortly. In Table 3, I list 
seventeen key tenets of justification logic remaining from 
positivism. The first eleven are extrapolated from the nine 
characteristics remaining from positivism that still 
constitute adequate scientific analysis, according to 
Suppe’s (1977) analysis. Five of the remaining six consist 
of universally accepted principles pertaining to the 
establishment of scientific laws—nomic necessity—
guarding against the acceptance of accidental regularities 
in observed phenomena (Hunt 1991). The last tenet 
emphases the continued importance of empirical 
confirmation. These seventeen tenets remain as the 
positivist legacy defining sound scientific procedure for 
developing ‘instrumentally reliable’ results from scientific 
investigations. Instrumental reliability is defined as 
occurring when a counterfactual conditional such as "if A 
then B” is reliably forthcoming over a series of 
investigations. Though Comtean positivists or classical 
empiricists might consider this the essence of science, that 
is, the instrumental goal of producing highly predictable 
results, scientific realists, as I note in the next section, 
accept instrumentally reliable findings as the beginning of 
their attempt to produce truthful scientific statements. 

> > > Insert Table 3 about here < < < 

4.1.2 SCIENTIFIC REALISM 
My painfully brief discussion of scientific realism6 

focuses on aspects of realism surviving the so-called van 
Fraassen critique that have special relevance for 
organization science. This discussion focuses on the 
modern appreciation of the centrality of models in well 
constructed normal science. 

External Reality. The “long term success of a 
scientific theory gives reason to believe that something 
like the entities and structure postulated by the theory 

actually exists” (McMullin 1984, p. 26). This 
statement still characterizes the heart of scientific realism 
(Hunt 1991, de Regt 1994). Though scientific realism 
dominates modern philosophy of science, each author 
seems to have his/her own version. Thus, there is 
epistemologically fallibilist realism (Popper 1959), critical 
realism (Campbell 1974), ontic realism (MacKinnon 
1979), semantic realism (van Fraassen 1980), 
methodological realism (Leplin 1984, 1986), constructive 
realism (Giere 1985), evolutionary naturalistic realism 
(Hooker 1985), pragmatic (internal) realism (Putnam 
1987), and quasi-realism (Suppe 1989, Blackburn 1993), 
to list just a few. McKelvey (in press-c) references a dozen 
others. 

Accidental Regularities. Another key element carried 
forward from positivism is the use of experiments to 
protect against trying to explain accidental regularities. 
This view is highlighted in Bhaskar’s (1975/1997) 
transcendental realism, an early conception of realism 
particularly relevant to social science (Chia 1996). 
“...[T]here is in science a characteristic kind of dialectic in 
which a regularity is identified, a plausible explanation for 
it is invented and the reality of the entities and processes 
postulated in the explanation is then checked” (Bhaskar 
1975/1997, p. 145). This logic of scientific discovery is 
diagrammed in Figure 1. The quote describes the Comtean 
positivist’s view of science, what Bhaskar terms classical 
empiricism, in which intangible and unmeasurable terms 
are avoided in favor of observable instrumental relations 
between factual events. In this view, science is reduced to 
“...facts and their conjunctions. Bhaskar says that classical 
empiricist epistemology holds for closed systems—what 
semantic conception epistemologists refer to as “isolated 
idealized physical systems” (Suppe 1977, pp. 223–224)—
but falls apart in open systems (such as firms) where the 
many uncontrolled influences minimize the likelihood of 
an unequivocal determination of a counterfactual such as 
“if A then B.” 

> > > Insert Figure 1 about here < < < 
In stage (1) of Figure 1 Bhaskar makes a clear 

distinction between developing theory based on identified 
regularities—which could be accidental, and 
experimentally contrived invariances—which better fit the 
counterfactual conditional basis of law-like statements and 
which might seldom if ever be discernible naturally in 
complex open systems because of the many countervailing 
influences. Átheoretical econometric industry studies are 
particularly susceptible to reporting out accidental 
regularities. Bhaskar then notes that both stages (2) and (3) 
lead to the development of conceptual representations of 
posited underlying generative mechanisms such as 
structures and processes in the form of iconic or 
formal/mathematical models. Though the models of 
transcendental idealists and transcendental realists both 
contain “imagined” (Bhaskar’s term, p. 145) conceptual, 
intangible, unmeasurable theory terms, the terms remain 
unreal for idealists and are taken as real by realists. 
Bhaskar notes further that though models may be 

                                                 
5  The history and logical shortcomings of positivism and its mythological 
presence in organization science are briefly discussed in McKelvey 
(1997).  The definitive analysis is given by Suppe (1977). 
6  I present a somewhat fuller, but still brief review of scientific realism in 
McKelvey (1997c).  Those wishing a more complete view should consult 
Churchland and Hooker (1985), Suppe (1989), de Regt (1994), and. 
Aronson, Harré, and Way (1994). 
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independent of particular scholars, they are not 
independent of human activity in general. The natural 
world becomes a construction of the human mind or, in its 
modern conception, of the scientific community” 
(1995/1997, p. 27, pp. 148−167). He says:  

Transcendental realists regard “...objects of knowledge [in the 
models] as the structures and mechanisms that generate phenomena; 
and the knowledge as produced in the social activity of science. 
These objects are neither phenomena (empiricism) nor human 
constructs imposed upon the phenomena (idealism), but real 
structures which endure and operate independently of our 
knowledge, our experience and the conditions which allow us access 
to them. Against empiricism the objects of knowledge are structures, 
not events; against idealism, they are intransitive.... (p. 25) 

Intransitive is defined to indicate that objects of scientific 
discovery exist independently of all human activity, and by 
structured Bhaskar means they are “...distinct from the 
patterns of events that occur (p. 35). Further elaborated, 
structures may occur independent of observed regularities 
and in fact may not be observable or measurable except 
via contrived experiments that create experimentally 
induced “invariances” unobservable in naturally occurring 
real world phenomena. 

Bhaskar’s diagram shows two paths. The “regularity” 
path begins with Comtean positivism where science is 
limited to stating relations among intransitive measurable 
empirical Realm 1 regularities—stage 1. Next comes the 
recognition that science includes Realm 3 theory terms 
representing underlying causes, which historical 
relativists7 now take as transitive idealistic conceptions 
that are unreal and unique to observers or perhaps 
scientific communities—stage 2. Then comes the 
recognition that science includes Realm 3 conceptions that 
are real in that they do indeed represent intransitive natural 
underlying causal mechanisms—stage 3. The 
“invariance” path starts with the bifurcation between 
experimentally contrived invariances vs. identified event 
regularities. The terms in models purporting to represent 
the underlying natural causal mechanisms reflect 
simultaneously both stage 2—cognitive (idealistic) 
concepts of underlying mechanisms that are transitive, 
reflecting the idea of science as a “process-in-motion” 
(Bhaskar, p. 146), and stage 3—approximations of 
intransitive real underlying mechanisms. In the invariance 
path, four fundamental aspects of science are highlighted: 
(1) creation of counterfactual experimental invariances; 
(2) creation of iconic or formal/mathematical models 
containing at least some Realm 3 terms representing 
underlying causal mechanisms; (3) recognition that 
science consists of process-in-motion that creates transitive 
theory terms; and (4) recognition that scientific realism is 
based on transitive theory terms that are successively 

improved approximations of intransitive real 
underlying causal mechanisms. 

Van Fraassen’s Critique. Van Fraassen’s (1980) 
attack8 against early realism stands as the starting point for 
most subsequent realist arguments. Van Fraassen’s 
development of constructive empiricism is seen as having 
filled the void left by the collapse of positivism. But he 
also argued that science could progress solely on the basis 
of empirical tests of theories, as opposed to assertions of 
whether or not they are true. A reduced view of the key 
elements of van Fraassen’s approach, following de Regt 
(1994, pp. 105-107), is shown in Table 4. In van 
Fraassen’s semantic conception based argument, semantic 
meaning replaces axiomatic syntactic statements and 
science becomes model-centered. A theory is empirically 
adequate if the empirical substructures of its model 
accurately represents a real phenomenon. A theory may be 
adopted, become successful, and believed in as empirically 
adequate without one having to take the additional step of 
believing it is true—thus avoiding the problem of asserting 
the reality of Realm 3 terms. This view reasserts the 
positivists view that instrumental reliability is the basis of 
good science. 

> > > Insert Table 4 about here < < < 
Blurring the Realms and Falliblist Verisimilitude. 

The next scientific realist reorientation steers toward 
lessening the differentiation between Realms 1 and 2 and 
the pivotal role of models. Giere (1985), accepts the 
model-centeredness of van Fraassen’s proposed 
epistemology, but he distinguishes between observability 
and detectability. Van Fraassen accepts detection if 
humans could get repositioned so the detection instrument 
was unnecessary—thus the moons of Jupiter are 
observable, though from earth they are detectable only 
with an instrument, whereas quarks can never be observed 
by humans. This puts the basis of belief on human 
capabilities—we can travel to the stars but cannot shrink 
down to see quarks. Should the basis of truth rest on 
human physiology or travel capabilities? Giere and others 
(Churchland 1979, Shapere 1982) accept belief based on 
detection, and by adding experimental manipulation we 
may include Hacking (1983) and Harré (1986). De Regt 
(1994) ends his book with a “Strong Argument for 
Scientific Realism,” as paraphrased in Table 5. In de 
Regt’s flow of science, incremental inductions 
systematically reduce belief in the less truthlike theories in 
favor of those having high verisimilitude (truthlikeness). 
Theories are considered instrumentally reliable when they 
consist of highly probably knowledge concerning Realm 1 
terms. These theories are the result of incremental 
inductions that selectively eliminate those having lower 
probability of truthlikeness. Many of the theories 
remaining contain Realm 3 terms. The likelihood of 
underdetermined and thus potentially false theories                                                  
                                                 7  The historical relativist movement, based on works by Hanson (1958), 

Kuhn, (1962), and Feyerabend (1975) emphasizes the incommensurability 
of discourse across paradigms, the social constructed nature of science, 
and its dynamics over time. 

8  Another penetrating critique by Laudan (1981) deserves mention, 
though space precludes discussing it here. 
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remaining, which include Realm 3 terms, is minimal. At 
any given time the inductive process (which assumes the 
seventeen tenets remaining from positivism) leads to 
probable knowledge about Realm 3 terms, which warrants 
tentative belief in the existence of the Realm 3 terms—
putting scientific realism on a more plausible foundation 
than van Fraassen’s constructive empiricism. 

> > > Insert Table 5 about here < < < 
Epistemic Invariance and Scientific Adequacy. The 

meaning of plausibility and verisimilitude is fleshed out by 
Aronson, Harré, and Way (AHW) (1994). Building on van 
Fraassen’s model-centered conception of science, they 
develop their plausibility thesis, key tenets of which are 
shown in Table 6. As does Bhaskar (1975/1997, Ch. 1), 
AHW argue that plausibility stems from both 
experimental9 and ontological adequacy of the model(s). 
Verisimilitude (and plausibility) increases as a function of 
both (1) improved experimental adequacy of the model to 
predict or retrodict and (2) improved ontological adequacy 
of the model to represent (refer to) the phenomena defined 
as within the scope of the theory. Scientific progress is 
based on the increasingly close relationship between 
accurate representation of reality, on the one hand, and 
prediction and measurement on the other. Thus, Figure 2, 
reproduced from AHW (1994, p. 197) shows scientific 
progress to be a function of (1) better predictions and 
manipulations (experimental adequacy)—defined as 
predictions suggested by a theory P compared to 
discovered results B; and (2) making the model more 
representative (ontological adequacy)—defined as a 
model’s representation of phenomenon T compared to 
what the phenomenon is like in reality A. It shows two 
possible dynamics. First, the dotted line toward the origin 
shows progress toward increased truth as a function of 
both experimental and ontological adequacy. Second, the 
“veil of perception” depicting the level of observability of 
the terms comprising the theory may move from Realm 3 
to Realm 1 independently of where the dotted line “level 
of truth” is. AHW then state their principle of epistemic 
invariance, which holds that “the epistemological situation 
remains the same for observables and unobservables 
alike,” whether the state of observability is in Realms 1, 2 
or 3. 

> > > Insert Figure 2 and Table 6 about here < < < 

4.1.3 THE SEMANTIC CONCEPTION OF 
THEORIES 

Starting with Beth’s seminal work dating back to the 
Second World War (see Beth 1961), we see the emergence 

of the semantic conception of theories.10  In the 
following subsections I discuss five key aspects of this 
conception. The semantic conception is critical to the 
development of a organization science based on 
computational experiments. 

Integrating Elements of Scientific Realism. The 
Semantic Conception’s model-centered view of science 
offers a useful bridge between scientific realism and my 
proposed us of computational experiments as a basis of 
truth-tests of complexity theory rooted explanations in 
organization science. It also provides the key to integrating 
Bhaskar, van Fraassen, de Regt, and AHW. First, Bhaskar 
sets up the model development process in terms of 
experimentally manipulated invariances—as opposed to 
observed regularities. Second, Van Fraassen, drawing on 
the semantic conception, develops a model-centered 
epistemology and sets up empirical adequacy as the only 
reasonable and relevant “well constructed science” 
criterion. Third, accepting the model-centered view and 
experimental adequacy, AHW then add ontological 
adequacy so as to create a scientific realist epistemology. 
In their view, models are judged as having a higher 
probability of truthlikeness if they are experimentally 
adequate in terms of a theory leading to experimental 
predictions testing out and ontologically adequate in terms 
of the model’s structures accurately representing that 
portion of reality deemed within the scope of the theory at 
hand. Finally, de Regt develops a strong argument for 
scientific realism building on the probabilist paradigm, 
recognizing that instrumentally reliable theories leading to 
highly probable knowledge consist of a succession of 
eliminative inductions that reduce the probability of 
underdetermination to negligible proportions. This 
supports the idea that instrumentally reliable inductive 
arguments based on observables lead quite easily to 
similar quality arguments based on unobservables, thus 
agreeing with AHW’s view of the independence of 
movement toward truthlikeness and movement from 
Realm 1 to Realm 3 terms. 

From Axioms to Phase Spaces. After Beth three early 
contributors emerged, Suppes (1957, 1961, 1962, 1967), 
van Fraassen (1970, 1972, 1980) and Suppe (1967, 1977, 
1989).11  Suppes chose to formalize theories in terms of 
set-theoretic structure on the grounds that, as a 
formalization, set theory is more fundamental to 
formalization than axioms. Instead of a set-theoretic 
approach, van Fraassen chose a state space and Suppe 
chose a phase space platform. A phase space is defined as 
a space enveloping the full range of each dimension used 

                                                                                                  
10  Thompson (1989) offers a more detailed but accessible review of the 
semantic conception, including also the traditional view asserting the 
axiomatic basis of scientific laws, the centrality of which it challenges. 

9  I have substituted experimental in place of van Fraassen’s empirical 
adequacy.  As made clear by Bhaskar, philosophers prefer experimental 
empirical methods and nomic necessity so as to avoid accidental 
regularities.  This fits closely with the label, “Better predictions and 
manipulation,” that AHW use in their Figure 9.1 (Figure 2 here).  This 
also avoids confusion with ontological adequacy which is also an 
empirical test of how well model structures represent the real world. 

11  Suppe (1989) proposes a “quasi scientific realist” approach that 
accepts more of van Fraassen’s critique than most modern scientific 
realists are inclined to do.  Space limitations preclude my discussion of 
this “compromise” variant. 
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to describe an entity. Thus, one might have a regression 
model in which variables such as size (employees) , gross 
sales, capitalization, production capacity, age and 
performance define each firm in an industry and each 
variable might range from near zero to whatever number 
defines the upper limit on each dimension. These 
dimensions form the axes of a Cartesian space. In the 
phase space approach, the task of a formalized theory is to 
represent the full dynamics of the variables defining the 
space, as opposed to the axiomatic approach where the 
theory builds from a set of assumed axioms. A phase space 
may be defined with or without identifying underlying 
axioms. The set of formalized statements of the theory is 
not defined by how well they interpret the set of axioms 
but rather by how well they define phase spaces across 
various phase transitions. Thus, spaces are defined by their 
dimensions and by all possible configurations across time 
as well. 

Isolated idealized physical structures. Having 
defined theoretical adequacy in terms of how well a theory 
describes a phase space, the question arises, what are the 
relevant dimensions of the space. In the axiomatic 
conception the axioms are used to define the adequacy of 
the theory. In the semantic conception adequacy is defined 
by the phenomenon. The current reading of the history of 
science by the semantic conception philosophers shows 
that no theory ever attempted to represent or explain the 
full complexity of some phenomenon. Classic examples 
given are the use of point masses, ideal gasses, pure 
elements and vacuums, frictionless slopes, and assumed 
uniform behavior of atoms, molecules, and genes. 
Scientific laboratory experiments are always carried out in 
the context of closed systems whereby many of the 
complexities of natural phenomena are set aside. Suppe 
(1977, pp. 223–224) defines these as “isolated idealized 
physical systems.” Thus, an experiment might manipulate 
one variable, control some variables, assume many others 
are randomized, and ignore the rest. In this sense the 
experiment is isolated from the complexity of the real 
world and the physical system represented by the 
experiment is necessarily idealized. 

Yes, a theory is intended to provide a generalized 
description of a phenomenon, say, a firm’s behavior. But 
no theory ever includes so many terms and statements that 
it could effectively accomplish this. A “...theory (1) does 
not attempt to describe all aspects of the phenomena in its 
intended scope; rather it abstracts certain parameters from 
the phenomena and attempts to describe the phenomena in 
terms of just these abstracted parameters” (Suppe 1977, p. 
223); (2) assumes that the phenomena behave according to 
the selected parameters included in the theory; and (3) is 
typically specified in terms of its several parameters with 
the full knowledge that no empirical study or experiment 
could successfully and completely control all the 
complexities that might affect the designated parameters—
theories are not specified in terms of what might be 
experimentally successful. In this sense a theory does not 
give an accurate characterization of the target 

phenomena—it predicts the progression of the 
modeled phase space over time, which is to say, it predicts 
a shift from one abstract replica to another under the 
assumed idealized conditions. Idealization could be in 
terms of the limited number of dimensions, assumed 
absence of effects of the many forces not included, 
mathematical formalization syntax, or the assumed bearing 
of various auxiliary hypotheses relating to theories of 
experiment, theories of data, and theories of numerical 
measurement. “If the theory is adequate it will provide an 
accurate characterization of what the phenomenon would 
have been had it been an isolated system....” (p. 224). 

Model-Centered Science. The central feature of the 
semantic conception is the pivotal role given to models. 
Figure 3 diagrams three views of the relation among 
theory, models, and phenomena. In Figure 3a I portray a 
typical axiomatic conception: (1) a theory is developed 
from its axiomatic base;  (2) semantic interpretation is 
added to make it meaningful in, say, physics, 
thermodynamics, or economics; (3) the theory is used to 
make and test predictions about the phenomena; and (4) 
the theory is defined as experimentally and ontologically 
adequate if it both reduces to the axioms and is 
instrumentally reliable in predicting empirical results. 
Figure 3b depicts a typical organization science approach: 
(1) a theory is induced after an investigator has gained an 
appreciation of some aspect of strategic behavior; (2) an 
iconic model is often added to give a pictorial view of the 
interrelation of the variables, show hypothesized path 
coefficients, or possibly a regression model is formulated; 
(3) the model develops in parallel with the theory as the 
latter is tested for both experimental and ontological 
adequacy by seeing whether effects predicted by the 
theory can be discovered in some sampling of the 
phenomenon. Figure 3c illustrates the semantic 
conception: (1) the theory, model, and phenomenon are 
viewed as independent entities; (2) science is bifurcated 
into two independent but not unrelated activities; (2a) 
experimental adequacy is tested by seeing whether the 
theory, stated as counterfactual conditionals, predicts the 
empirical behavior of the model (think of the model as an 
isolated idealized physical system moved into a 
laboratory); and (2b) ontological adequacy is tested by 
comparing the isomorphism of the model’s idealized 
structures against that portion of the total relevant “real-
world” phenomenon defined as “within the scope of the 
theory.”  

>>> Insert Figure 3 about here <<< 
It is important to emphasize that in the semantic 

conception “theory” is always hooked to and tested via the 
model. “Theory” does not attempt to explain “real world” 
behavior. It only attempts to explain “model” behavior. It 
does its testing in the isolated idealized physical world 
structured into the model. “Theory” is not considered a 
failure because it does not become elaborated and fully 
tested against all the complex effects characterizing the 
real world phenomenon. The mathematical or 
computational model is used to structure up aspects of 
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interest within the full complexity of the real world 
phenomenon and defined as “within the scope” of the 
theory. Then the model is used to test the “if A then B” 
counterfactuals of the theory to consider how a firm—as 
modeled—might behave under various possibly occurring 
conditions. Thus a model would not attempt to portray all 
aspects of, say, notebook computer firms—only those 
within the scope of the theory being developed. And, if the 
theory did not predict all aspects of these firm’s behaviors 
under the various relevant real world conditions it would 
not be considered a failure. But this is only half the story. 
Parallel to developing the experimental adequacy of the 
“theory–model” relationship is the activity of developing 
ontological adequacy of the “model–phenomenon” 
relationship. How well does the model represent or refer 
to the “real world” phenomenon? How well does an 
idealized wind-tunnel model of an airplane wing represent 
the behavior of a full sized wing on a plane flying in a 
storm? How well does a drug shown to work on 
“idealized” lab rats work on people of different ages, 
weights, and physiologies? How well might a 
computational model, such as the Kauffman (1993) NK 
model that Levinthal (1997), Baum (in press), McKelvey 
(in press-a), and Rivkin (1997) use, represent 
coevolutionary competition, that is, actually represent that 
kind of competition in, for example, the notebook 
computer industry? 

Theories as Families of Models. One of the primary 
difficulties encountered with the axiomatic conception is 
the idea that only one fully adequate model should unfold 
from the underlying axioms—only one model can “truly” 
represent reality in a rigorously developed science. In the 
eyes of some philosophers, therefore, a discipline such as 
evolutionary biology fails as a science. Instead of a single 
axiomatically rooted theory, as proposed by Williams 
(1970) and defended by Rosenberg (1985), evolutionary 
theory is a family of theories including theories explaining 
the mechanisms of natural selection, mechanisms of 
heredity, mechanisms of variation, and a taxonomic theory 
of species definition (Thompson 1989, Ch. 1). Even in 
physics, the theory of light is represented by two models 
and theories: wave theory and corpuscular theory. 

Since the semantic conception does not require 
axiomatic reduction, it tolerates multiple models. Thus, 
“truth” is not defined in terms of reduction to a single 
model. Mathematical, set-theoretical, and computational 
models are considered equal contenders to represent real 
world phenomena. In physics, both wave and corpuscular 
models are accepted because they both produce 
instrumentally reliable predictions. That they also have 
different theoretical explanations is not considered a 
failure. Each is an isolated idealized physical system 
representing different aspects of real world phenomena. In 
evolutionary theory there is no single “theory’ of 
evolution. There are in fact subordinate families of 
theories (multiple models) within the main families about 
natural selection, heredity, variation, and taxonomic 
grouping. Organization science also consists of various 

families of theories, each having families of 
competing models within it. Thus there are at this time 
families of theories about: industry evolution, vertical 
integration, diversification, SBU and corporate 
performance, sustained competitive advantage, core 
competencies, to name just a few. Axiomatic reduction 
does not appear in sight for any of these theories. 

Experimental and Ontological Adequacy. If the 
semantic conception of science is defined as focusing on 
the formalization of families of models, the theory−model 
experimental test, and the model−phenomenon ontological 
test, organization science generally misses the mark. 
Empirical tests are typically defined in terms of a direct 
“theory−phenomenon” corroboration, with the result that 
(1) it does not have the bifurcation of theory–model 
experimental and model–phenomenon ontological tests, 
(2) the strong counterfactual type of confirmation of 
theories is seldom achieved because the attempt is to 
predict real world behavior rather than model behavior, (3) 
model structures are considered invalid because their 
inherent idealizations usually fail to isomorphically 
represent real world complexity—instrumental reliability 
is low, and (4) models are not formalized—though this 
latter criterion may be optional. Semantic conception 
philosophers take pains to insist that the semantic 
conception in no way represents a shift away from the 
desirability of moving toward formalized (though not 
necessarily axiomatic) models. Suppe (1977, p. 228), for 
example chooses the phase space foundation rather than 
set theory because it does not rule out qualitative models. 
In organization science there are a wide variety of 
formalized models (Carley 1995), but in fact most 
organization and strategy theories are not formalized, as a 
reading of such basic sources as Clegg, Hardy, and Nord 
(1996), Donaldson (1996), Pfeffer (1997), and Scott 
(1998) readily demonstrates. In addition these theories 
have little ontological adequacy, and if the testing of 
counterfactual conditionals is any indication, most have 
little experimental adequacy either. 

4.1.4 SELECTIONIST EVOLUTIONARY 
EPISTEMOLOGY 

Beginning in 1934 Popper began work on selectionist 
evolutionary epistemology (collected into Popper 1963, 
1972). During the ensuring years the topic has benefited 
from a growing body of literature, including some 21 
articles by Campbell.12  Popper says, “From the amoeba to 
Einstein, the growth of knowledge is always the same: we 
try to solve our problems, and to obtain, by a process of 
elimination, something approaching adequacy in our 
tentative solutions” (1972, p. 261). This literature broadly, 
and Campbell quite specifically, makes three selectionist 
arguments: (1) Our visual and cognitive capabilities have 
                                                 
12  See especially Campbell 1974, 1986, 1987, 1989, 1991, 1995, 
Campbell and Paller 1989; and McKelvey (in press) for reference to the 
other key works in this literature. 
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evolved in a manner that assures that we as human beings 
perceive and mentally process the world around us 
accurately—otherwise we would not have survived a 
dangerous and changing world; (2) The plethora of 
scientific ideas abounding in a socially constructed 
scientific community are selectively winnowed out and 
eventually cohere (following the hermaneuticists’ 
coherence theory) such that the community evolves toward 
holding the most fruitful theories; and (3) the dominant 
and/or coherent theories held by a scientific community 
become fruitful (defined as successful and/or 
instrumentally reliable) as they are selectively and 
successively adapted to more closely fit with real world 
entities. Campbell’s conclusion is unmistakable—that 
selectionist (trial-and-error) learning, is seen as the 
dominant explanation for the evolution, if not progression, 
of human thought and more specifically, the progression 
of scientific explanation. 

Key arguments supporting the centrality of selectionist 
evolutionary epistemology are given in the following 
quote from Hooker (1989, pp. 43-44):13 

From Lorenz [1941] we take the fundamental importance of 
understanding the evolutionary history of an organism, capacity, or 
function for understanding its nature and dynamics. We also take the 
conclusion that an evolutionary history of cognition supports a 
general epistemological fallibilism, indeed, a complex fallibilism that 
is “penetrable,” one whose structure can be theorized (fallibly), 
investigated and perhaps improved upon. From Piaget [1950] we 
take the importance of understanding all living processes in terms of 
dynamics of open-ended regulatory systems, and the basic idea that 
psychogenesis is an extension of embryogenesis in this sense. Popper 
[1972] taught us the importance of reversing the traditional priority 
between the questions “What is knowledge?” and “How does 
knowledge progress?,” and the methodological incisiveness of 
fallibilism. From Toulmin [1972] we take the importance for any 
evolutionary theory of science of recognizing its historical and social 
dimension, and the systematic importance of methods in relations to 
theories. And from Campbell [1974a,b, 1990b] we take the 
fundamental role of processes of variation and selective retention to 
evolutionary development, in particular the power of nested 
hierarchies of such processes for regulatory systems development, 
and the importance of recognizing social context in their functioning. 
It has become evident that evolutionary epistemology sheds fresh 
light on many areas of traditional philosophy. (Also quoted in de 
Regt 1994, p. 195; de Regt’s italics.). 

Campbell and Paller (1989, p. 232−233) say that “for 
the epistemologist of scientific belief, the design puzzle is 
the presumed fit between belief and the invisible [Realm 
3] world to which such belief refers.” They line up with 
Bhaskar (1975/1997) in noting that since “scientific beliefs 
are the property and product of a social system (p. 233)” 
selectionist epistemology “must include specification of 
social processes that would plausibly lead to the 
substitution of more valid belief (p. 243).” Their 
sociological aspect is similar to Bhaskar’s sociology of 

knowledge component of his transcendental 
idealism. The fallibilist sociology of knowledge process 
leads in an approximationist or convergent fashion toward 
a more probable belief in the truth of explanations about 
intranscendental entities—whether Realm 1, 2, or 3. 
Hahlweg (1989, p. 70−71) proposes theories as maps as 
guides to action, saying, “we select maps on the basis of 
their capacity to guide us to our destination. Likewise we 
choose to employ theories that can serve as guides to 
action. In doing so we indirectly select for theories that 
depict the genuine invariant relationships holding for the 
world.” His view could look instrumental, but he 
emphasizes that picking out theories as guides to action is 
tantamount to indirectly selecting true theories. 

Hooker (1989) develops an evolutionary naturalism 
epistemology where knowledge is conceived of as a “a 
primary factor in the coordination of our responses to our 
environment (including now both our internal environment 
and the guiding of our search for more knowledge” (p. 
108). In this he is followed by Plotkin (1993) who sees the 
human brain as the primary evolutionary adaptation 
through which the human species now copes with an 
increasingly rapidly changing environment. In this respect 
the evolution of science is virtually one and the same with 
the evolution of the human brain and the human species’ 
adaptive capabilities. Hooker distinguishes between a 
horizontal “convergent” evolution of knowledge and a 
vertical “punctuated” form. Thus: 

Theories regulate the development of practices (technologies) and 
data structures (facts), and methods regulate the development of 
theories. Methods, theories, and technologies may all be refined and 
extended; this [horizontal evolution of knowledge] is the “normal” 
situation. They may also change in more radical or revolutionary 
ways [vertical evolution of knowledge], thereby forcing it to retreat 
to less committed...assumptions. The key to understanding scientific 
development is the process of ascending these theoretical and 
methodological hierarchies and the multiple ways in which normal 
science may pave the way for this. (1989, p. 109) 

Hooker sees science as evolving in both convergent 
and punctuated ways. Popper (1972) views science as two 
evolutionary trees growing in the same scientific forest 
and at the same time. One tree, like Hooker’s horizontal 
evolution, converges toward optimal designs “within the 
line” of speciation or specialization toward a specific 
niche—it shows more and more branches in reflecting the 
growth of applied knowledge resting on the growth of 
tools and instruments in ever more applied specialized and 
differentiated niches. The other tree, reflecting the growth 
of pure knowledge or basic research, shows a tendency 
toward increasing integration, fewer theories, and thus 
fewer and fewer branches. Rather than an “either-or” 
evolution of horizontal (convergent) or vertical 
(punctuated) evolution, Popper sees it as simultaneous 
evolution toward many applied branches and fewer 
integrative theory branches. Taken together we have 
convergent, punctuated, and integrative evolutions of 
science. 

                                                 
13  As chronicled by Suppe (1977), Kuhnian historical relativism was 
abandoned by philosophers in conjunction with their abandonment of 
positivism.  The dynamic view of the evolution of science, the key 
contribution philosophers acknowledge from Hanson (1958), Kuhn 
(1962), and Feyerabend (1975), was carried forward by the evolutionary 
epistemologists. 

To summarize: a selectionist evolutionary 
epistemology has replaced historical/subjectivist relativism 
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for the purpose of framing a dynamic epistemology. First, 
much of the literature from Lorenz forward has focused on 
the selectionist evolution of the human brain, our cognitive 
capabilities, and our visual senses (Campbell 1988b), 
concluding that these capabilities do indeed give us 
accurate information about the world we live in. Second, 
Campbell (1986, 1988a,b, 1989b, 1991, 1995) draws on 
the hermeneuticists’ coherence theory in a selectionist 
fashion to argue that over time members of a scientific 
community (as a tribe) attach increased scientific validity 
to an entity as the meanings given to that entity 
increasingly cohere across members. This process is based 
on hermeneuticists’ use of coherence theory to attach 
meaning to terms discovered in archaic religious texts. 
Campbell draws on the hermeneuticists’ “validity-seeking” 
principles, such as the hermeneutic circle of “part-whole 
iterating,” omnifallibilist trust, pattern matching, 
increasing correspondence with increasing scope, partial 
proximal revision, fallibilist privileging of observations 
and core, and the principle of charity (space precludes 
defining these here but Campbell (1991) does so). This 
version of the social constructionist process of knowledge 
validation that defines Bhaskar’s transcendental idealism 
and sociology of knowledge components in his scientific 

realist account. The coherentist approach selectively 
winnows out the worst of the ideas or theories and by this 
process approaches increased concept validity. In this view 
the coherence process within a scientific community 
continually develops in the context of a selectionist testing 
for ontological validity. The socially constructed 
coherence enhanced theories of a scientific community are 
tested against reality, with a winnowing out of the less 
ontologically correct theoretical entities. This process, 
consistent with the strong version of scientific realism 
proposed by de Regt (1994), does not guarantee “truth,” 
but it does serve to move science in the direction of 
increased concept validity and an increasing 
verisimilitude. 

4.1.5 THE RANKED CRITERIA OF EFFECTIVE 
SCIENCE 

I have identified four postpositivisms the remain 
credible with the modern philosophy of science 
community: the direct Legacy of positivism, Scientific 
Realism, the Semantic Conception, and Selectionist 
Evolutionary Epistemology. From my brief discussion of 
these literatures I distil seven criteria essential to the 
pursuit of effective science: 

 
1. Falliblist Epistemic Invariance Across Realms   Minimal Scientific Standard 
2. Nomic Necessity 
3. Bifurcated Model-Centered Science 
4. Experimentally Created Invariances 
5. Experimental and Ontological Adequacy 
6. Verisimilitude via Selection 
7. Instrumental Reliability     Highest Scientific Standard 

The list appears as a Guttman scale. I posit that it goes 
from easiest to most difficult, but my ordering could be 
open to debate. To be constructive in contributing to an 
effective organization science, modern epistemology, thus, 
holds that complexity theory applications must be 
accountable to these criteria. Existing strong sciences such 
as physics, chemistry, and biology meet all of them. 
Organization science and complexity theory applications 
to firms does not meet any but the first. This is why the 
threat of faddism is so real—skepticism will replace the 
present enthusiasm for complexity theory if not soon 
bolstered by credible scientific activity. 

1. Falliblist Epistemic Invariance Across Realms. 
This criterion could have been the most difficult for 
complexity theory based organization science to meet. If 
we were to hold to the “avoid metaphysical entities at all 
costs” standard of the positivists, organization science 
would fail since even the basic entity, the firm, is hard to 
put one’s hands on. Scientific realists, and especially 
AHW (1994), remove this problem by virtue of their 
principle of epistemic invariance. They argue that 
realmness is independent of scientific progress toward 
truth. Given that the search and truth-testing process of 
science is defined as falliblist with “probabilistic” results, 
it is less important to know for sure whether the fallibility 

lies with metaphysical terms in Realm 3, problematically 
detected terms in Realm 2, measurement error on Realm 1 
entities, or the probability that the explanation or model 
differs from real world states. Which ever is the reason, 
the findings are only true with some probability and 
selective elimination of any error improves the probability. 
Since realmness has been taken off the table as a standard 
by the scientific realists, it is one standard complexity 
applications meet, if only by default. 

2. Nomic Necessity. This requirement holds that one 
kind of protection against attempting to explain a possibly 
accidental regularity occurs when rational logic can point 
to a lawful relation between an underlying structure—
force—that if present would produce the regularity. If 
force A then regularity B. Right or wrong, the previously 
mentioned six bullets identify complexity theory induced 
principles (force relationships). Since the phenomena now 
ostensibly explained by complexity theory have been well 
known—whether fluid dynamics, genetic evolution, or in 
firms—complexity theory is not a result of discovering 
new real world phenomena. Rather it is the presumption of 
a different kind of complexity to be explained—á lá 
Cramer. So right from the start the nomic necessity 
requirement has been followed by complexity theorists in 
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the physical and life sciences. This is only marginally true 
in organization science applications, if it is true at all. 

3. Bifurcated Model-Centered Science. It is clear 
from the literature described in Nicolis and Prigogine 
(1989), Kaye (1993), Mainzer (1994), Favre et al. (1995), 
that natural science based complexity theory fits the 
semantic conception’s rewriting of how effective science 
works. There is now a considerable natural science 
literature of formalized mathematical and computational 
theory on the one hand and many tests of the adequacy of 
the theoretical models to real world phenomena on the 
other. A study of the literature emanating from the Santa 
Fe Institute (Kauffman 1993, Cowan, Pines, and Meltzer 
1994, Gumerman and Gell-Mann 1994, Belew and 
Mitchell 1996, Arthur, Durlauf, and Lane 1997) shows 
that though social science applications lag in their 
formalized model-centeredness, the trend is in this 
direction. Formalized model-centered complexity 
applications to firms are only just beginning (Rivkin 1997, 
Levinthal 1997, Baum in press, McKelvey in press-a), and 
especially the special issue on complexity theory planned 
by Organization Science. It would appear that this 
standard is only just being recognized and surely is not 
“met” in any constructive fashion. 

4. Experimentally Created Invariances. Witchcraft, 
shamanism, astrology, and the like, are notorious for 
attaching post hoc explanations to apparent regularities 
that are frequently accidental—disaster struck in ’37 after 
the planets were lined up thus and so. Though nomic 
necessity is a necessary condition, using an experimentally 
created invariance to test the “if A then B” counterfactual 
posed by the law in question is critically important. 
Experiments more than anything else separate science 
from witchcraft, anti-science or creation-science. Without 
a program of experimental testing, complexity applications 
to organization science remain metaphorical and if made 
the basis of consulting agendas and other managerially 
oriented advice are difficult to distinguish from witchcraft 
and creation-science. An exemplar in this regard is 
Kauffman’s 25 years of so of work on his “complexity 
may thwart selection” hypothesis—summarized in his 
1993 book. He presents numerous computational 
experiments and the structures and results of these are 
systematically compared with the results of vast numbers 
of other experiments carried out by biologists over the 
years. It would be difficult to take complexity applications 
to management as valid without a similar course of 
experiments having taken place. 

5. Experimental and Ontological Adequacy. This 
standard augments the nomic necessity, model-
centeredness, and experimental invariances criteria by 
separating theory testing activity from model-testing 
activity. In this view, if we are to have a proper complexity 
science applied to firms, we should see a systematic 
agenda linking theory development and mathematical or 
computational model development. The counterfactual 
tests are carried out via the theory–model link. We should 
also see a systematic agenda linking model structures to 

real world structures. The tests of the model–
phenomena link focus on how well the model represents 
real world behavior. Without evidence that both of these 
agendas are being actively pursued there is no evidence 
that we have a complexity science of firms. By modern 
philosophical standards, the usual 
behavioral/social/organization science activity that focuses 
only on a direct theory–phenomena link is based on a 
mistaken reading of how effective science progresses. 
Thus, even if we had some evidence that there were 
traditional organization science type empirical tests of 
complexity applications, they would not meet this 
standard—it would just “look” like the standard was being 
met. 

6. Verisimilitude via Selection. I ranked this standard 
here simply because the selection process is something that 
happens only over time. For selection to produce any 
movement toward less fallible truth there has to have been 
numerous trials of theories of varying quality, 
accompanied by tests of both experimental and ontological 
adequacy. So, not only do all of the previous standards 
have to have been met, they have to have been met across 
an extensive mosaic of trial-and-error learning adhering to 
the experimental and ontological adequacy tests. Since 
complexity science applied to firms barely has one 
combined experimental and ontological test, it is surely a 
long way from meeting this standard. The combined test I 
refer to is described in McKelvey (1998). It draws on 
Kauffman’s (1993) experiments with his NK model for the 
experimental adequacy test and on Sorenson’s (1997) 
ontological test of some of the NK model structures on 
complexity effects on firm survival in the computer 
workstation industry. 

7. Instrumental Reliability. A glass will fall to earth 
from my hand every time I let go—assuming I am standing 
on the earth. This is 100% instrumental reliability. Four 
hundred years ago Kepler, using the Tyco Brahe’s 
primitive instruments, achieved a reliability of predicting 
planetary movements within 5% of modern accuracy. As I 
discuss elsewhere (McKelvey 1997b), it seems unlikely 
that organization science will ever be able to make 
individual event predictions. Even by Hempel’s (1965) 
“deductive-statistical” standards organization science will 
not be able to make class probability predictions (what von 
Mises (1963) terms class probability) comparable to the 
class predictions physicists make when they predict the 
half-life of particle emissions from radioactive material. 

Even when organization science is moved out from 
under the archaic view of research by the semantic 
conception—that theories are tested by looking directly to 
real world phenomena—organization science still suffers 
in instrumental reliability compared to the natural sciences. 
The “isolated idealized systems” of natural science are 
more easily isolated and idealized, and with lower cost to 
reliability, than of socio-economic systems. Natural 
science lab experiments more reliably test nomic based 
counterfactual conditionals and the lab experiments also 
have much higher ontological representative accuracy. In 
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other words, their “closed systems” are less different from 
their “open systems” than they are for socio-economic 
systems. This leads to higher instrumental reliability. 

The instrumental reliability standard is, thus, truly a 
tough one for organization science. The semantic 
conception makes this standard easier to achieve. Our 
chances for improved reliability stem from the bifurcation 
of scientific activity into tests for experimental adequacy 
and ontological adequacy, as I have already discussed. 
First, by having one set of scientific activities focus only 
on the predictive aspects of a theory–model link, the 
chances improve of finding models that test 
counterfactuals with higher experimental instrumental 
reliability—the reliability of predictions increases. Second, 
by having the other set of scientific activities focus only on 
the model structures across the model–phenomena link, 
ontological instrumental reliability will also improve. For 
these activities reliability hinges on the isomorphism of the 
structures causing both model and real world behavior, not 
on whether predictions occur with high probability. Thus, 
in the semantic conception instrumental reliability now 
rests on the joint probability of two elements: (1) 
predictive experimental reliability; and (2) model structure 
reliability.  

If a science is not centered around (preferably) 
formalized computational or mathematical models it has 
no chance of meeting the last five of the seven criteria—it 
is not even on the same playing field. Such is the message 
of late 20th century (postpositivist) philosophy of science. 
This message tells us very clearly that in order for an 
organizational complexity science to avoid faddism and 
scientific discredit it must become model-centered. In 
Section 5.3 I use random Boolean network and 
Kauffman’s coevolutionary complexity models to illustrate 
the role computational experiments might play. 

5 TESTING FOR SCIENTIFIC 
ADEQUACY 

The semantic conception holds that half of science 
progresses with the interactive development of theory and 
formalized models—the theory−model link. Because of 
the apparent stochastic nonlinear ontology of 
organizational phenomena, I choose to focus on 
computational models. Developing a model-centered 
organization science using computational experiments 
advances complexity theory applied to firms up the 
Guttman scale to the 5th level, as I will now demonstrate. 
To begin, I first present stylized complexity theory of 
firms’ behavior to model. 

5.1 A STYLIZED COMPLEXITY THEORY 
OF FIRM ADAPTATION 

Besides defining the critical value concept in natural 
and organization science, it is important to understand how 
the state of a critical value might be defined by the 
adaptive tension experience by a firm or one of its 
subunits. Though critical values in organization science 

are unlikely to have the precise value they appear to 
have in some natural sciences (Johnson and Burton 1994), 
it seems likely that a probability distribution of such values 
will likely exist for individual firms and each of their 
subunits. I am assuming here that adaptive tension is not 
necessarily uniform for a firm as a whole and across all its 
subunits. 

Over the course of this discussion I have applied a few 
key principles from complexity theory to firms. They are 
restated below: 

From Prigogine: 
1. A corporation’s performance demands causes an adaptive tension 
(energy differential) between an SBU’s current practices and what is 
required by the acquiring firm. 
2. Below the first critical value, adaptive change may occur a some 
minimal level within the constraints of the existing SBU process 
(microstates) governed by its existing organizational culture and structure. 
3. Above the first critical value of adaptive tension, one or more 
dissipative structures (informal or formal groups or other organizing 
units) will emerge to exist in a state far from equilibrium. 
4. Above the second critical value the dissipative structures will pass 
from a state “at the edge of chaos” to a state governed by deterministic 
chaos and multiple basins of attraction—bifurcated basins of attraction, 
one being the existing practices and the other being attempts to conform 
to the demands of the MBA terrorists sent down from corporate 
headquarters. 

From Kauffman: 
1. Selection forces are too weak in the face of industry competition for 
a subset of firms to hold a unique attribute, hence typical properties 
pervading the industry prevail. That is, systems facing high innovation 
opportunities exhibit order not so much because of competitive selection 
but because complexity effects offer no resistance. Thus, if selection had 
dominated, Apple Computer’s superior operating system would have 
prevailed. As it happened the prevailing “typical” system of the PCs won 
out—not because the best was selected nor because complexity effects 
thwarted Apple more than any other firm. 
2. Even with strong selection forces, an industry may be characterized 
by many suboptimal innovation opportunities which do not differ 
substantially from the average properties of the industry. That is, given 
that (a) as peaks proliferate they become less differentiated from the 
general landscape; (b) in precipitous rugged landscapes adaptive 
progression is trapped on the many suboptimal “local” peaks; and (c) 
even in the face of strong selection forces, the fittest members of the 
population exhibit characteristics little different from the entire 
population. Therefore even though selection is strong, complexity effects 
thwart selection effects. For example, gasoline may be very competitive 
but the minimal advantages from different additives do not give any 
particular firm an advantage. 

These six principles boil complexity theory down to 
two effects: (1) Emergent dissipative structures appear 
between the 1st and 2nd critical values of adaptive tension; 
and (2) As complexity (defined as number of ties among 
agents) increases, selection effects are more likely 
thwarted. Adaptive success, thus, appears as a single 
rounded hill when plotted as a third dimension against 
adaptive tension and complexity. 

5.2 SOME ILLUSTRATIVE 
COMPUTATIONAL EXPERIMENTS 

Moving from minimal to highest scientific standards 
requires moving up the Guttman scale (from 1−7). Laws 
or principles I already have from Kauffman. Next are 
required a model, developing the theory−model link, and 
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developing the model−phenomena link. Finally, comes 
selective improvement of experimental and ontological 
adequacy and enhanced instrumental validity. For 
purposes of illustration in this paper, I take only a first step 
of suggesting possible computational models with which 
to develop the theory−model link. Their origin is jointly 
from biology, physics, and computer science. In Section 
5.3.1 I discuss an approach for modeling the relation 
between adaptive tension and emergent structure. In 
Section 5.3.2 I present a method for modeling the 
complexity vs. selection dynamic. Both models appear in 
Kauffman (1993). This discussion shows how the 
complexity theory of firms might be raised to the 
experimental adequacy criterion in level 5 of the Guttman 
scale. 

5.2.1 MODELING EMERGENT STRUCTURE 
Kauffman’s NK model derives from physicists’ spin-

glass models, a set of models used to study the energy 
landscape created by sets of magnetic dipoles spinning in 
similar or opposite directions (Fischer and Hertz 1993). 
While physicists use these binary particle models to 
understand energy minimization, Kauffman (1993) uses 
them to understand how organisms, via mutations, take hill 
climbing “adaptive walks” to maximize fitness. A step in 
the walk occurs when, for example, a gene moves to a new 
point on the landscape by adopting a mutant form from a 
neighboring gene. The NK model is a “static” model. It is 
useful for answering questions about how many local 
optima there are, what their fitness levels are, lengths of 
adaptive walks, rates at which improved fitnesses are 
found, and so forth (see Kauffman Ch. 2). 

To model the emergent structure aspect of complexity 
theory I draw on a series of studies by Kauffman and 
Derrida and colleagues14 in which they discovered 
parameters controlling the emergence of structure in 
random Boolean networks. In this modeling approach 
Kauffman shifts from spin glasses to the computer 
scientists’ cellular automata, focusing on Boolean 
network dynamics.15  Spin glass models, are single 
change “bit-flipping” functions in which the outcome state 
is based on a single randomly chosen input. Automata are 
mutational functions having 2N inputs, each of which has 
some probabilistic effect on the Boolean outcome state 
(Jones 1995). Given a Boolean output of two states, on or 
off, the total number of different outcomes in an 
autonomous (closed to inputs outside the automata 
elements in the network) Boolean network is . Since 2 2 k

this could be a truly vast number (over 33 million 
for K = 24), Kauffman creates a “Boolean statistical 
mechanics” in which fairly “exact” outcomes are created 
by sampling from the total system of elements (Kauffman 
1974, Gelfand and Walker 1984). 

For K = 2 inputs there are 16 Boolean functions, shown 
in Figure 4. In this “tabular” depiction the on-off inputs 
are on the edges and the outcome disposition is inside the 
box.16  For game theorists one of the inputs is a “feedback 
element” showing the current state of the automata 
element itself, but for Kauffman inputs are determined 
only by the existing states of other elements in the 
network. The stability of a Boolean network may be upset 
by “minimal” or “structural” perturbations: 1) minimal 
perturbations are caused by a state flip in an input, say 
from on to off; 2) structural perturbations come from 
changing the outcome state of one or more Boolean 
function elements. In Kauffman’s models only minimal 
perturbations create network instability. Emergent 
structure in Kauffman’s models could derive from two 
sources: 1) forcing functions; and 2) homogeneity bias. 
Forcing functions occur when only one input can force the 
outcome state. In the ‘OR’ function any input with a 1 
forces an outcome state of 1. With the ‘AND’ function any 
input with a 0 forces an outcome state of 0. In Figure 4, 
only the ‘XOR’ and ‘IFF’ functions are not forcing 
functions—on one or both inputs.17  As the number of 
inputs k increases, the relative number of forcing functions 
decreases rapidly—dropping from 87.5% for K = 2 to less 
than 5% for K = 4 (Gelfand and Walker 1984, p. 128). 
Homogeneity bias is created by altering the number of 
functions that are forcing. Thus, if the ratio of ‘OR’ 
functions is increased (‘OR’ has 3 out of 4 values = 1) the 
probability of homogeneity increases. If the ratio of the 
‘IFF’ or ‘XOR’ functions is increased, homogeneity stays 
the same since for them the ratio of 1’s and 0’s is 50/50. In 
Kauffman’s models automata elements are randomly 
selected, meaning that both forcing and homogeneity 
impacts are fully randomized. 

> > > Insert Figure 4 about here < < < 
A substantial body of research bearing on random 

Boolean networks identifies several parameters that shift 
the systems from ordered to complex to chaotic behavior, 
as reviewed by Kauffman (1993, Ch. 5). These networks 
are termed “annealed” because at each time period the 
connections from other automata cells and the cell 
functions are randomly reassigned. As a result there is no 
reason to expect them to revisit some prior state, that is, 

                                                                                                  
14  Some key contributors are: Kauffman 1974, Gelfand and Walker 1984, 
Derrida and Flyvbjerg 1986, Derrida and Pomeau 1986, Derrida and 
Stauffer 1986, Derrida and Weisbuch 1987. 

16  A very accessible description of automata is given in Westhoff, 
Yarbrough, and Yarbrough (1996).  A more advanced introduction is 
given by Weisbuch (1991). 15  There is no way I can attempt to replicate Kauffman’s development 

here.  Recourse to Kauffman (1993, Ch. 5) is highly recommended for the 
more interested reader.  Some basic reference texts on cellular automata 
modeling are: Hopcroft and Ullman 1979, Toffoli and Margolus 1991, 
Weisbuch 1991, Garzon 1995, Gaylord and Nishidate 1996, Langley 
1996) 

17  Weisbuch (1991, p. 11) says only functions numbered 1, 4, 7, 8, 11, 
and 13 are truly forcing.  Other authors such as Gelfand and Walker 
(1984) and Westhoff et al. (1996) consider all but functions 6 and 9 as 
forcing since for these two the outcome state depends on knowing both 
input states. 
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act as a limit cycle. This is in contrast to “quenched” 
networks, in which connections and cell functions are 
randomly assigned only once at the outset (Kauffman 
1993, p. 198). In either case there are N (number of 
vertices or binary variables), K (number of input 
connections from other cells), and P (the forcing bias of 
the cells). As N, K, and P increase, random Boolean 
networks shift from order to chaos. At K = 2 (when P is at 
0.5—meaning no imposed forcing bias and thus a “chaotic 
regime”), networks show a phase shift separating order 
from chaos. Depending on the size of K, there is also a 
phase shift, designated by Pc, also separating order from 
chaos. In the region of K = 2 or Pc there exists a 
“boundary region” in which complex emergent structure 
appears. 

Needless to say, complexity theory applied to 
biology is quite new. Using random Boolean networks to 
model biological behavior is even more novel. Little of 
either has been applied to developing a model-centered 
organization science, except for a brief example given by 
Gelfand and Walker (1984,p 230) in which they apply this 
modeling approach to managerial control systems focused 
on repetitive routines. Consider the following rudimentary 
illustration. 

Imagine a firm with 20 agents (line managers, staff and 
engineers) responsible for various parts of a value chain. 
At any given time for any specific activity an agent has 
two alternatives: make an adaptive improvement (value 1) 
or do nothing (value 0). In making this decision an agent 
may consider a variety of inputs, from one other person to 
all the other people. For modeling purposes an agent can 
only make a binary decision at any given time period, but 
obviously over many time periods an agent can make 
rather complicated adaptive moves. And for modeling 
purposes we limit an agent to a fixed number of input 
connections from other individuals, though of course in 
the real world he or she could have varying inputs on any 
given day for any specific activity. But given the cost of 
time and effort to communicate, and boundedly rational 
abilities to process information, Simon’s (1957) satisficing 
theory suggests that agents might typically settle for a 
small fixed number of information inputs for any given 
decision. Given that we have narrowed managerial 
decision making down to micro sequences of decisions on 
specific micro aspects of their responsibilities at any given 
time, the 20 agents in the model are not unreasonably 
simplified from real agents. With this model, then, we can 
alter the number of agents, alter the number of input 
connections they consider at any given instant. In addition 
we can randomly assign each agent one from a range of 
cell functions or rules—numbering up to  2 2 K

.

Figure 5 shows a lattice coming from Weisbuch (1991) 
showing two kinds of emergent structure: (1) “islands” of 
structure (non 1’s) separated by (2) a larger “percolating 
frozen structure” of forced cell functions, all of which 
have a value of 1. In this lattice K = 4 and P = 0.2. Though 
the frozen structure has been forced to a value of 1, the 
cells in the islands still are able to oscillate between 1 and 
0. In this “ordered regime” the control parameters 
produce ordered behavior in the percolated structure—the 
“forcing” behavior at some initial cell percolates 
throughout the system resulting in uniform behavior and 
cells in the percolated structure are all one state. That is, a 
small change in one cell ripples through the frozen 
component producing wholesale forcing into one basin of 
attraction—the value 1 in this particular lattice. 
Alternatively, one could also see a chaotic regime (shown 
in Figure 6) in which the larger “percolating chaotic 
structure” oscillates around long to possibly limitless limit 
cycles and islands are frozen on a single value where K = 4 
and P > Pc (Pc = 0.28). This would also result if K > 3 with 
P > Pc. In this circumstance the major component would 
continue oscillating on the 1 and 0 values with order 
appearing as small isolated islands frozen on one value. In 
terms of the NK model, ordered networks adapt more 
readily on correlated, less rugged landscapes, whereas 
chaotic systems adapt more successfully on rugged 
landscapes, according to Kauffman’s results (1993, p. 215
−217). 

Supposing agents were limited to two inputs, the range 
of possible cell functions is given in Figure 4—sixteen in 
all. Possibly agents could have many more inputs, they 
could value or weight each input differently, or they could 
wait until input information from particular other agents 
accumulates to some level deserving their attention, the 
range of cell functions may become limitlessly more 
complicated. It is at this point that Kauffman (1974) 
introduces his “statistical mechanics ensemble” modeling 
approach in which the vast number of cell functions is 
randomly sampled instead of the model working through a 
lattice containing billions of elements. He assumes that the 
samples fairly accurately represent the mix of cell 
functions distributed in the entire multidimensional 2 × K 
× N lattice. For now, let’s stay with the simple 2 × (K = 2) 
× (N = 20) lattice, with the parameter P ranging from 0.5 
to 1.0. 

> > > Insert Figure 5 about here < < < 
Kauffman argues that at the point of the K = 2 or P > 

Pc “phase shift” transitions there exists a “liquid region” 
in which complex adaptive systems emerge “at the edge of 
chaos”—the small isolated frozen islands in the Boolean 
network model. Thus, these network systems may lie in 
three states: (1) the ordered regime of small isolated frozen 
islands; (2) the chaotic regime of one large frozen state 
with a few oscillating islands remaining; or (3) the liquid 
region of the phase transition state where the large frozen 
component “melts” into some number of oscillating 
islands. This model, thus, behaves consistently with 
complexity theory in that it shows emergent structure 
when the critical values take on the instigating values. 

To keep things simple, suppose that at the time of 
acquisition, each SBU value chain agent responds to two 
inputs from fellow agents—represented as K = 2. Suppose 
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further that the acquiring corporation imposes up to two 
additional inputs—represented as K = 3 or 4. And suppose 
as well that the acquiring firm’s inputs range from MBA 
terrorist type demands to the mildest of suggestions—
represented as P. Given Prigogine’s principles, consider 
the following question: How many information inputs or 
routines governing the agents of an existing SBU value 
chain should the acquiring firm disrupt or leave in place 
so as to assure the level of emergent structure likely to 
optimize SBU adaptation? Below the 1st critical value no 
change results. Above the 2nd critical value chaos results. 
In the middle are the emergent dissipative structures at the 
edge of chaos. Three critical value scenarios are possible: 

First, a preliminary response to this question rests on 
some results produced by Stauffer (1987a), shown in 
Table 7. The left hand column shows P ranging from 0 to 
0.5—since the probabilities are symmetric the results for P 
are the same as for 1 − P. At P = 0.5 (no bias toward 
either 1 or 0 values) and K = 2 these results mirror 
Kauffman’s results—the incidence of forcing cells is at a 
high enough probability (π = 0.8750) that forcing results. 
A phase transition occurs at K = 2. The model generates a 
dominant component of cells percolating throughout the 
network showing short oscillating cycles around a 
repeating state (limit cycle attractor) with a few isolated 
frozen islands here and there in which cells oscillate 
through long, if not limitless, cycles. This is the ordered 
regime where cells in the dominant component oscillate 
around a quickly repeating limit cycle not unlike a 
negative feedback process in a goal directed control—
machine bureaucracy—system. In terms of our acquiring 
firm this means that, absent inputs from the corporate 
level, most of the behavior in the SBU is retained at a 
steady-state by the governing routines and information 
inputs. Thus, I can model the situation below the 1st critical 
value using a random Boolean network with N = 20, K = 
2, and P = 0.5. An example cell lattice is shown in Figure 
6a. 

> > > Insert Table 7 and Figure 6 about here < < < 
Second, suppose the MBA terrorists come rushing in 

to the SBU and create so much adaptive tension that chaos 
results. This is represented in Table 7 by K = 4 (the right 
hand column)—now four inputs to each agent or cell 
instead of two. One may can see right away that if P 
remains at .5, π quickly reduces well below the phase 
transition level (which is 0.59275 (Stauffer 1987, p. 792)) 
at which a network becomes ordered. As a result the 
network consists of a chaotic dominant region in which a 
small perturbation in the form of a cell with lengthy or 
limitless cycles between repeating states percolates 
throughout the system, except for a few frozen stable (low 
limit cycle) islands. An example cell lattice appears in 
Figure 6b. In this case it is oscillation that percolates. This 
is opposite to the stable percolation structure of the 
ordered regime in which cells oscillate around a quickly 
repeating limit cycle. This means that absent any “forcing” 
by corporate, three things happen that foster chaos: (1) A 

few SBU agents abandon the negative feedback 
process in favor of freewheeling change (oscillation) of a 
nonlinear positive feedback kind (that is, the limit cycle 
has lengthy or limitless repetition); (2) This tendency 
among a few agents percolates throughout the value chain 
to become the dominant chaotic component, though with a 
few isolated frozen islands showing short limit cycle 
oscillations; and (3) Each agent responds to the four inputs 
with an independent idiosyncratic possibly limitless 
change process (oscillation cycle) in his or her attempt to 
respond to the adaptive tension raised by the MBA 
terrorists. Thus I can model the chaotic situation above the 
2nd critical value by using the random Boolean network 
with N = 20, K = 4 and P = 0.5.18 

Finally, consider the “edge of chaos” state between the 
1st and 2nd critical values. In the random Boolean network 
model the state between the two critical values is 
compressed down to a very narrow slice at the phase 
transition. Studies (Stauffer 1987a,b; Weisbuch 1991) 
show that for the K = 3 column the phase transition occurs 
at 0.278 (within Kauffman’s (1974) threshold of 0.26 ± 
0.02. For the four input K = 4 column there is some 
disparity between the analytic method of Stauffer and the 
numerical method of Kauffman, depending on the kinds of 
automata rules used (see Hartman and Vichniac (1986). 
For consistency I will stay with Kauffman’s computational 
number—0.26 ± 0.02—for the K = 4 column. The results 
are that the 1st and 2nd critical values are compressed nearly 
to the same point and that P has to be lowered to 0.26 ± 
0.02 to reach the threshold. Thus, the complexity theorists’ 
“edge of chaos” kind of complexity is what Kauffman 
calls a liquid region just on the high P side of the transition 
point. So, let’s assume we are starting with P = 0.5 and the 
frozen dominant component is chaotic. Then, as P is 
lowered to the 0.26 level, the frozen percolated chaotic 
component “melts” and the model creates numerous 
substructures of the more ordered kind—shorter limit 
cycle oscillations. Oppositely, if we were to start with an 
ordered regime (P near 0) and were to raise P toward 0.26, 
the frozen percolated ordered component would melt, 
creating numerous substructures of the more chaotic less 
ordered kind—longer limit cycles. Though I am not aware 
of studies already doing this, it seems logical that one 
could take a “fractal” approach with the model. Thus, one 
could bring the main model into the “melting” zone and 
then as substructures appear they also could be forced into 
their own melting zones. In this way the model could 
represent firms showing emergent dissipative structures 
that avoid the extremes of dominating negative or positive 
feedback processes. 

                                                 
18  This model does not discriminate between deterministic chaos 
(bifurcation into two or a few attractors) and an even less structured 
totally random kind of complexity where no algorithmic compression is 
possible. 
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One might conclude from this that K and C are 
combined into one overall moderating effect on the fitness 
yield from an agent’s choice to adopt a higher fitness from 
a nearest-neighbor. Results of the models indicate that this 
is not true. As Kauffman points out (pp. 249, 254), the 
speed at which agents encounter Nash equilibria increases 
as K increases, and decreases as C and S increase. Thus, in 
these models K acts as a complexity “forcing” effect in 
speeding up the process of reaching stable Nash equilibria, 
whereas C acts as an “antiforcing” effect, as does S. 
Presumably K effects are averaged as per the static single 
agent NK model, leaving C and S effects (S multiplies the 
C effects) to modify fitness yields on an agent’s actions 
independently of K effects. The consequence is that 
increasing K “tunes” the landscape toward more 
ruggedness (increased numbers of less fit local optima), 
and increased likelihood of agents being marooned on 
local optima. But increasing C and/or S prevents achieving 
Nash equilibrium by prolonging the “coupled dancing” as 
Kauffman calls it in which opponents keep altering each 
other’s landscapes, keep the fitness search going, and 
thereby prevent stabilization—the more opponents there 
are, the more the instability persists. 

In this Section I have demonstrated how the 
complexity theory principles specifying how adaptive 
tension causes emergent structure of varying kinds in 
firms, depending on the critical values. What is novel here 
is that I have shown how adaptive tension in firms may be 
represented as P, the indication of forcing bias in a set of 
randomly selected automata cells. The theory of critical 
value effects on adaptive tension, as it applies to firms also 
may be appropriately modeled by using random Boolean 
network models. This a step beyond current applications 
of Kauffman’s NK model to the study of firms on adaptive 
landscapes. Thus, random Boolean networks offer one 
method of setting up the theory−model link and moving 
complexity applications to firms one step up the Guttman 
scale of scientific credibility. But this only applies to the 
first principle of complexity theory applied to firms. I now 
turn to modeling the second principle. 

5.2.2 MODELING COMPLEXITY EFFECTS ON 
SELECTION 

Kauffman (1993, p. 239) argues that his “NK[C] 
Boolean game” model is essentially the same as the 
Boolean networks (described in Section 5.3.1), when agent 
outcomes are limited to 0 or 1, the K number of 
interdependencies is taken as the number of inputs, and 
Nash equilibria in N person games are taken as equivalent 
to agents being trapped on local optima. In the NK[C] 
Boolean game fitness yields are assigned to the 0 or 1 
actions by drawing from a uniform distribution ranging 
from 0.0 to 1.0. The K interdependencies that might serve 
to modify fitness yields from an agent’s actions are drawn 
from a fitness table in which fitness levels of each “one-
change” nearest-neighbor19 are assigned by drawing from 
a uniform distribution also ranging from 0.0 to 1.0. 
Kauffman points out that the complexity tuning effect 
occurs when increasing K reduces the height of local 
optima while also increasing their number. Thus 
complexity catastrophe more likely occurs as K is 
increased. Additional details defining Kauffman’s 
assumptions and my translation of his models to an 
organizational context are given in Tables 8 and 9. An 
explanation of Kauffman’s modeling approach is given in 
Westhoff, Yarbrough and Yarbrough and an illustration of 
their application to firms in McKelvey (in press-a). 

In the NK[C] model, K acts as a force toward increased 
complexity and complexity catastrophe whereas C appears 
to act as a force away from catastrophe, that is, internal 
complexity leads to complexity catastrophe but external 
complexity leads away from catastrophe. The experiments 
in his Figure 6.3 (reproduced here as Figure 7a, b) show 
that increasing C prolongs instability (the fraction of 
coupled dances not reaching Nash equilibrium). This 
behavior of the model is significant since from 
Kauffman’s theory and the quote above one might easily 
conclude with reason that—holding S constant—external 
complexity C should lead to complexity catastrophe just as 
much as internal complexity K does. But Kauffman’s 
Figure 6.4 (1993, p. 248; not shown here) clearly shows 
this not to be true. 

> > > Figure 7about here < < < 
Kauffman experiments with the NK[C] model using 

various combinations of parameters, as described in the 
“experiments” below. To help readers connect these 
models back to Kauffman’s book, I label the models by 
their Figure or Table numbers in his book. Outcomes from 
the various experiments are described briefly. > > Insert Tables 8 and 9 and Figure 6 about here < < < 

In describing how K and C effects enter into the model, 
Kauffman says: 

1. Can too many coevolutionary links among a 
firm’s value chain competencies inhibit competitive 
advantage? [Experiments F6.3 & F6.4 (p. 247–249). Set 
N = 24; C = 1, 8, 20; K = 2, 4, 8, 12, 16. Allow only one 
random change per time period at only one (randomly 
selected) of the N sites (competencies); each agent chooses 
a new one-change neighbor if it contributes to an 
improved overall chain fitness. The experiments draw 100 
to 200 pairs over 250+ time periods.]  The results show 
that increasing K is not good, unless the opponent has a 
high K or a high C. But if Nash equilibria are encountered, 
low K is better than high K, because low K means higher 

...[F]or each of the N traits in species 2, the model will assign a 
random fitness between 0.0 and 1.0 for each combination of the K 
traits internal to species 2, together with all combinations of C traits 
in species 1. In short, we expand the random fitness table for each 
trait in species 2 such that the trait looks at its K internal epistatic 
inputs and also at the C external epistatic inputs from species 1 
(Kauffman 1993, p. 244). 

                                                 
19  Defined in Table 7. 
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In this section I have shown how the second 
principle of complexity theory applied to firms may be 
appropriately modeled using Kauffman’s NK[C] model. 
This model is especially insightful because it takes into 
account complexity within a firm’s value chain and also 
the complexity of competitive dynamics between firms. 

fitness peaks. So, as the probability of encountering Nash 
equilibria goes up, say because of an opponent’s actions to 
raise its K or C, the better it is to have a low K. But if the 
opponent does not raise K or C, and therefore Nash 
equilibria do not occur quickly, the low K firm will lose its 
advantage. A firm’s strategy with respect to number of 
internal coevolutionary links among value chain 
competencies, K, seems to hinge on whether Nash 
equilibria can be anticipated; that is, on whether an 
opponent will raise its K or C. In general the 
computational experiment indicates that keeping one’s 
internal and external coevolutionary interdependencies just 
below that of opponents is the best strategy. Thus, a little 
more coevolutionary delimitation than that of one’s 
opponent seems a good idea. 

6 CONCLUSION 
My analysis shows that as philosophers have separated 

themselves from the excesses of positivism, they have 
taken its legacy in the directions of scientific realism, the 
semantic conception of theories, and evolutionary 
epistemology. From these four normal science 
postpositivisms I have extracted a Guttman scale of seven 
criteria essential to credible scientific truth-testing of 
theories: 2. Can too many coevolutionary chain links between 

a firm and an opponent inhibit its competitive 
advantage? [Experiments F6.3 and F6.4.]  The results 
show that firms having dense external coevolutionary ties 
with opponents (that is, high Cs prevail) are best off if they 
achieve Nash equilibria early. During the preNash 
oscillation period, rapid moves by a firm are likely to have 
significant detrimental effects on its opponents. A “maxi-
min” strategy suggests a firm should target coevolutionary 
opponents whose Cs match its own K. That is, absent any 
more pointedly aggressive strategy toward a specific 
opponent, a firm should generally attempt to equalize 
internal and external coevolutionary interdependencies. 
For a more targeted strategy, a firm is best off if it attacks 
opponents who have moderate Cs and low Ks, while 
keeping its K slightly higher than the K of its opponents, 
till its K reaches the C of its opponents. 

1. Falliblist Epistemic Invariance Across Realms 
2. Nomic Necessity 
3. Bifurcated Model-Centered Science 
4. Experimentally Created Invariances 
5. Experimental and Ontological Adequacy 
6. Verisimilitude via Selection 
7. Instrumental Reliability 

My development of complexity theory as it might be 
applied to firms focuses on (1) the “at the edge of chaos” 
kind of complexity and critical values of adaptive tension 
associated with the emergence of dissipative structures; 
and (2) the conditions at which complexity effects 
undermine natural selection processes governing the 
coevolutionary adaptation of value chain activities. The 
ontology of value chain interdependencies is seen as fitting 
the ontological assumptions of complexity theory and 
computational models. I argue that the methods of 
“bottom-up” science apply to the study of firms as well. I 
set up the computational illustrations by presenting a 
stylized complexity theory of firm adaptation. Both are 
new to organization science. 

3. Should strategists worry about possible 
complexity catastrophes? One of Kauffman’s basic 
insights is the complexity catastrophe. I would like to use 
his findings to consider how complexity catastrophes 
might affect firms. The underlying question is, what is the 
effect of landscape ruggedness on firms? [Experiments 
T2.1-T2.2 (pp. 55, 56). Set N = 8, 16, 24, 48, 96; K = 0 to 
95. Starting from a randomly selected firm, allow only one 
random change per time period at only one (randomly 
selected) of the N sites; each firm chooses a one-change 
neighbor if one of its sites is an improvement. Walks occur 
on 100 randomly selected landscapes with average fitness 
levels reported.]  Results show that lower levels of K 
create moderately rugged landscapes composed of a few 
high and somewhat precipitous local optima peaks. As 
levels of K increase, the number of peaks increases but 
their height diminishes, with the result that the landscape 
appears less rugged, with less differentiation between the 
plains and the local optima peaks. The lesson for a 
notebook computer firm, for example, seems to be, 
“Create a rugged landscape to heighten access to local 
optima having higher fitness peaks, by keeping internal 
coevolutionary interdependencies relatively small (K = 2 
to 8) even though the number of value chain competencies, 
N, in your coevolutionary pocket, is rising.” 

As far back as 1969 Kauffman (1969, 1974, 1993) 
began using random Boolean network models to explore 
the dynamics of emergent structure. His early studies have 
subsequently been pursued by Gelfand and Walker (1984), 
Derrida (1987) and a number of colleagues in statistical 
physics, particularly Stauffer (1987a,b) and Weisbuch 
(1991). Using as an example the various levels of adaptive 
tension that could be imposed by an acquiring firm on a 
new acquisition, I demonstrate how the parameters of the 
random Boolean network model fit the organizational 
world. While at a primitive state of application, these 
models show how one could use them to develop the 
complexity theory of emergent structure in firms, 
depending on the critical values of adaptive tension. Using 
the example of coevolutionary adaptation in the 
microcomputer industry, I then use Kauffman’s (1993) 
NK[C] model to show how one might explore the 
dynamics of complexity effects on the adaptive 
capabilities of firms. These effects may be modeled in 
terms of intrafirm complexity as well as interfirm 
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complexity. Taken together these theory−model links 
suggest that firms adapt best under conditions of moderate 
adaptive tension and value chain complexity.  

More importantly my applications of these models to 
firms illustrates how the study of organizations may 
become a model-centered science. Further, they show how 
organization science may be moved up the Guttman scale 
of scientific credibility—from level 1 into level 5. Only by 
accomplishing these initial steps and continuing to the top 
of the scale will complexity theory applications in 
organization avoid the fate of management fads. I believe 
the lessons from developments the main line natural 
sciences and the philosophy of science in the last third of 
the 20th century are strikingly different from the message 
of the prior decades. They are lessons that I demonstrate 
may be readily applied to the study of firms. 

Of course, much remains to be accomplished. 
Arguments in scientific realism still rage (Churchland and 
Hooker 1985, Aronson, Harré, and Way 1994). The 
semantic conception is still being fleshed out (Suppe 
1989), as is evolutionary epistemology (Hahlweg and 
Hooker 1989, Campbell 1990). Not since the early 
exploration by Gelfand and Walker (1984) has anyone 
tried to apply random Boolean networks to the study of 
organizational adaptation, so my use of this approach is 
surely primitive. Though Kauffman’s NK model is seeing 
some application to firms on adaptive landscapes 
(Levinthal 1997, Rivkin 1996, Sorenson 1997, Baum in 
press), the NK[C] adaptation from the random Boolean 
network model is novel in my application (McKelvey in 
press-a) and may need alteration to more readily fit 
complexity theory applications to firms (McKelvey in 
press-b).  
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Figure 1. Bhaskar's Depiction of the Logic of Scientific Discovery † 
 

 generative
m echanism s
  in m odels

events; sequences; invariates

(3) (2)

(1)

real im agined/im aginaryem pirical-testing
transcendental idealism

classical em piricism

m odel-building

result/regularity

transcendental realism  

† Graphically reconstructed from Diagram 0.1 in Bhaskar (1975/97, p. 15) 

 
 
Figure 2. AHW's Graphical Representation of Convergent Realism † 
 

 
T R U T H

G e t t i n g  c l o s e r  t o  t h e  t r u t h

B e t t e r
p r e d i c t i o n s
a n d
m a n i p u l a t i o n

V e i l  o f  p e r c e p t i o n

R e a l m  3

R e a l m  2

R e a l m  1

P B−

T A−

P B f T A− − −

n o t - f

 

† Graphically recreated from Figure 9.1 in Aronson, Harré, and Way (1994, p. 195).



Thwarting Faddism 

 

30

Figure 3. Conceptions of the Axiom-Theory-Model-Phenomena Relationship 
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      Figure 4. Sixteen Boolean Functions for K = 2 inputs  

   Reproduced from Westhoff, Yarbrough and Yarbrough 1996, p. 12.
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Figure 5. Weisbuch’s Lattice Showing an Ordered Regime† 
 

 1  1  4  4  8  8  8  1  1  4  4  1  1  1  1  1 
 1  1  1  1  8  8  4  1  1  1  1  1  1  4  1  1 
 4  1  1  1  8 72  4  1  1  1  1  1  1  4  1  4 
 4  1  1 72 72 36  4  1  2  1  1  1  1  1  1  1 
 4  4  1 18  1 18 36  2  2  2  1  1  1  1  6  1 
 4  1  1 18 18 18 36  1  1  1  1  1  1 12  6 12 
12  1 18 18 18 18 18  1  1  1  1  1 12 12  1  1 
 1  1 18 18 18  1 18  1  1  1  1  1  1 12 12 12 
 1  1  1  1  1  1  1  1  1  4  4  1 12 12  1  1 
 1  1  1  1  1  1  1  1  1  1  4  4  4 12  1  1 
 1  4  4  1  1  1  1  1  1  1  4  4  1  4  1  4 
 1  1  1  1  1  1  1  1  1  1  1  4  1  4  4  4 
 1  1  1  1  2  2  1  1  1  1  1  1  1  1  4  1 
 1  1  1  1  1  1  1  1  1  1  1  1  1  1  4  1 
 1  1  1  8  8  1  1  1  1  1  1  4  4  1  1  1 
1 1 8 8 8 8 1 1 1 1 4 1 1 4 4 1

 
 
 
 
 
 
 
 
 

            K = 4, P < Pc. Percolated ordered regime shown as 1’s. 
                   † Reproduced from Weisbuch 1991, Figure 10.9, p. 139. 
 
 

      Figure 6. Weisbuch’s Lattice Showing a Chaotic Regime† 
 

 
 
 
 
 
 
 
 
 
 

     K = 4, P > Pc. Percolated chaotic regime shows as groups of three asterisks 
                     in which *** signifies cells with limit cycles too long to be measured. 

  1+++++++++  1  1  1  1  1  1  1  1  1  6  6  1
  1++++++++++++++++++  1  1  1  1+++++++++++++++
++++++++++++++++++++++++  1  1  1  1+++++++++  1
++++++++++++++++++  1  1+++  1  1  1  1++++++  1
++++++++++++++++++  1+++++++++++++++  1+++++++++
+++++++++++++++  2  2  2  2+++  4+++  1+++++++++
++++++++++++  1  1  1  2  1  1++++++++++++++++++
+++++++++  1  1  1  1  1  1  1++++++++++++++++++
+++++++++  1  1  1  1  1  1+++++++++++++++++++++
+++++++++++++++  1  1  1++++++++++++++++++  1+++
++++++++++++  1  1  1  1++++++++++++++++++++++++
+++  1  1+++++++++++++++++++++++++++  1+++++++++
+++  1  1+++++++++++++++++++++++++++  1+++  1  1
  1  1  1+++++++++++++++++++++++++++ 12+++ 12  1
  1  1++++++++++++++++++++++++  1  1 12  6  6  1
  1  1++++++  1  1++++++  1  1  1  1  1  2  6  1

                   † Reproduced from Weisbuch 1991, Figure 10.10, p. 139. 



Thwarting Faddism 

 

33

Figure 7 Size of K and C Related to Time to Reach Nash Equilibrium 

7a          When C = 1, K varying 
(reproduced from Kauffman 1993, Fig. 6.3, p. 247) 

 
 

7b          When C = 2, K varying 
(reproduced from Kauffman 1993, p 247) 
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Table 1. Example Process Event Sequences 
 

 (1)    unload   palletize   inspect   count   check quality   document 
 (2)    unload   inspect   count   check quality   palletize   document 
 (3)    document   count   palletize   check quality   inspect   unload 

 
 
 
 

Table 2. Some Complexity Theory Definitions 
 

2a—Definition of Kinds of Complexity by Cramer (1993) 

‘Subcritical complexity’ exists when the amount of information necessary to describe the system is less complex than the system itself. Thus a rule, such as F 
= ma = md2s/dt2 is much simpler in information terms than trying to describe the myriad states, velocities, and acceleration rates pursuant to 
understanding the force of a falling object. “Systems exhibiting subcritical complexity are strictly deterministic and allow for exact prediction” (1993: 213)  
They are also ‘reversible’ (allowing retrodiction as well as prediction), thus making the ‘arrow of time’ irrelevant (Eddington, 1930; Prigogine and 
Stengers, 1984). 

At the opposite extreme is Cramer’s ‘fundamental complexity’ where the description of a system is as complex as the system itself—the minimum number of 
information bits necessary to describe the states is equal to the complexity of the system. Cramer lumps chaotic and stochastic systems into this category, 
although deterministic chaos is recognized as fundamentally different from stochastic complexity (Morrison, 1991; Gell-Mann, 1994), since the former is 
‘simple rule’ driven, and stochastic systems are random, though varying in their stochasticity. 

In between Cramer puts ‘critical complexity’. The defining aspect of this category is the possibility of emergent simple deterministic structures fitting 
subcritical complexity criteria, even though the underlying phenomena remain in the fundamentally complex category. It is here that natural forces ease the 
investigator’s problem by offering intervening objects as ‘simplicity targets’ the behavior of which lends itself to simple rule explanation. Cramer (1993: 
215-217) has a long table categorizing all kinds of phenomena according to his scheme. 

2b—Definitions of Attractors by Gleick (1987) 

‘Point attractors’ act as equilibrium points around which forces cause the system to oscillate away from these points, but eventually the system returns to 
equilibrium—traditional control style management decision structures may act in this manner (appearing as subcritical complexity); 

‘Periodic attractors’ or ‘limit cycles’ (pendulum behavior) foster oscillation predictably from one extreme to another—recurrent shifts in the centralization and 
decentralization of decision making, or functional specialization vs. cross-functional integration fit here (also appearing as subcritical complexity); 

If adaptive tension is raised beyond some critical value, systems may be subject to ‘strange attractors’ in that, if plotted, they show never intersecting, stable, 
low-dimensional, nonperiodic spirals and loops, that are not attracted by some central equilibrium point, but nevertheless appear constrained not to breach 
the confines of what might appear as an imaginary bottle. If they intersected the system would be in equilibrium (Gleick, 1987: p. 140), following a point 
attractor. The attractor is ‘strange’ because it “looks” like the system is oscillating around a central equilibrium point, but it isn’t. Instead, as an energy 
importing and dissipating structure, it is responding with unpredictable self-organized structure to tensions created by imposed external conditions, such as 
tension between different heat gradients in the atmosphere caught between a cold ocean and a hot sun, or constraints in a fluid flow at the junction of two 
pipes, or tension created by newly created dissipative structures, such as eddies in a turbulent fluid flow in a canyon below a waterfall, or “MBA terrorist” 
structural changes imposed in an attempt to make-over an acquired firm. 

 



Thwarting Faddism 

 

35

Table 3  Basic Tenets of Organization Science Remaining from Positivism 
 
1. The truth or falsity of a statement cannot be determined solely by recourse to axiomatic formalized mathematical or logical statements without reference 

to empirical reality. 
2. Analytic (logic) and synthetic (empirical fact) statements are both essential elements of any scientific statement, though not always jointly present. 
3. Theory and observation terms are not strictly separate; they may shift from one categorization to the other or may satisfy both categorizations 

simultaneously. 
4. Theory terms do have antecedent meaning independent of observation terms. 
5. Theoretical language is invariably connected to observation language through the use of auxiliary statements and theories, lying outside the scope of the 

theory in question, which may or may not be well developed or even stated. 
6. The meaning of theoretical terms may be defined by recourse to analogies or iconic models. 
7. Procedures for connecting theories with phenomena must specify causal sequence and experimental connections; experimental connections must include 

all methodological details. 
8. Theories may or may not be axiomatizable or formalizable. 
9. It is meaningless to attempt to derive formalized syntactical statements from axioms devoid of semantic interpretation. 
10. Formalization is an increasingly desirable element of organization science, approaching the state of being necessary though not sufficient. 
11. Static semantic interpretation of formalized syntactical statements is not sufficient, given the dynamic nature of scientific inquiry. 
12. The “lawlike” components of theories contain statements in the form of generalized conditionals in the form of “If A, then B,” which is to say theories 

gain in importance as they become more generalizable. 
13. Lawlike statements must have empirical reference otherwise they are tautologies. 
14. Lawlike statements must have “nomic” necessity, meaning that the statement or finding that “If A then B” is interesting only if a theory purports to 

explain the relationship between A and B, that is, “If A then B” cannot be the result of an accident. 
15. The theory purporting to explain “If A then B” must be a systematically related set of statements embedded in a broader set of theoretical discourse 

interesting to organization scientists, which is to say, empirical findings not carefully connected to lawlike statements are outside scientific discourse. 
16. Some number of the statements comprising a theory must consist of lawlike generalizations. 
17. Theoretical statements must be of a form that is empirically testable. 

 

 

 

Table 4. Van Fraassen’s Constructive Empiricism † 
1. Science aims to give us theories which are empirically adequate: and acceptance of a theory involves as belief only that it is empirically adequate.... 

I shall call it constructive empiricism.... [A] theory is empirically adequate if what it says about observable things and events in this world is true.... 
[A] little more precisely: such a theory has at least one model that all the actual phenomena fit inside (p. 12).   [It] concerns actual phenomena: what 
does happen, and not, what would happen under different circumstances (p. 60). 

2. The syntactic picture of a theory identifies it with a body of theorems.... This should be contrasted with the alternative of presenting a theory in the 
first instance by identifying a class of structures as its models..... The models occupy centre stage (p. 44). 

3. To present a theory is to specify a family of structures, its models, and secondly, to specify certain parts of those models (the empirical substructures) 
as candidates for the direct representation of observable phenomena. The structures which can be described in experimental and measurement reports 
we can call appearances: the theory is empirically adequate if it has some model such that all appearances are isomorphic to empirical substructures 
of that model (p. 64). 

4. With this new [model centered, semantic] picture of theories in mind, we can distinguish between two epistemic attitudes we can take up toward a 
theory. We can assert it to be true (i.e. to have a model which is a faithful replica, in all detail, of our world), and call for belief; or we can simply 
assert its empirical adequacy, calling for acceptance as such. In either case we stick our necks out: empirical adequacy goes far beyond what we can 
know at any given time. (All the results of measurement are not in; they will never all be in; and in any case, we won’t measure everything that can 
be measured.)  Nevertheless there is a difference: the assertion of empirical adequacy is a great deal weaker than the assertion of truth, and the 
restraint to acceptance delivers us from metaphysics (pp. 68–69. 

5. It is philosophers, not scientists (as such), who are realists or empiricists, for the difference in views is not about what exists buy about what science 
is (1985, p. 255, n6). 

 †  Quotes all from van Fraassen 1980 unless otherwise specified; his italics. 
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Table 5. De Regt’s Strong Argument for Scientific Realism † 
 
1. A plausible distinction exists between Realm1 (observable) and Realm 3 (unobservable) terms, as viewed by scientists. 
2. This distinction is epistemologically relevant. Realm 3 terms (and the explanations constructed from them) are, thus, limited to more cautious claims. 
3. The true/false dichotomy is replaced by “truthlikeness” (Popper’s verisimilitude), and degrees or probabilities of truthlikeness. “Probabilism is the ‘new’ 

paradigm.” 
4. Current scientific theories are considered instrumentally reliable in that they incorporate highly probable knowledge concerning Realm 1 terms. 
5. These theories are the result of incremental inductions eliminating theories with lower probability truthlikeness. 
6. Many of the highly probable theories remaining postulate and depend upon the existence of Realm 3 terms. 
7. Underdetermination remains a risk since there are infinitely many ontologically interesting probably wrong but empirically equivalent (at any given time) 

alternative theories (analogous to few equations, many unknowns). 
8. The chance that the postulated Realm 3 terms do not exist (are not real—and thus the theory/explanation is based on terms whose truth value can never be 

ascertained) is present but negligible. 
9. “Therefore, inductive arguments in science lead to probable knowledge concerning unobservables; one is epistemologically warranted to tentatively (at 

any given time) believe in the existence of the specified unobservables; scientific realism is more plausible than constructive empiricism” (his italics). 

 †   Liberally paraphrased, with some quotes, from de Regt (1994, p. 284) 

 
 

Table 6. Aronson, Harré, and Way’s Plausibility Thesis † 
 

1. “A theory...[must consist of law-like statements] capable of yielding more or less correct predictions and retrodictions, the familiar criterion of 
‘empirical adequacy’” (p. 191). 

2. The law-like statements of the theory must also be “based on a model...which expresses the common ontology accepted by the community” (p. 191) 
which is to say, the model must relatively accurately represent that portion of the phenomena defined by the scope of the theory, that is ontological 
adequacy. 

3. “...[T]aken together, increasing empirical adequacy and ontological adequacy [which increase plausibility] are inductive grounds for a claim of 
increasing verisimilitude....” (p. 191). 

4. “The content of a theory consists of a pair of models..., that is, both the descriptive [ontological adequacy] and the explanatory [empirical adequacy] 
model” (p. 193) should represent the phenomena. Ideally, as a science progresses, the pair of models would merge into one model. 

5. “...[T]he verisimilitude of a theory is nothing other than its content: that is, of the model or models of which that content consists” (p. 193). 
6. The juxtaposition of both empirical and ontological adequacy minimizes underdetermination. 
7. “The key to our defense of our revised form of convergent realism is the idea that realism can be open to test by experimental considerations” (p. 

194). 
8. “When it comes to gathering evidence for our beliefs, the epistemological situation remains the same for observables and unobservables alike, no 

matter whether we are dealing with observables [Realm 1], possible observables [Realm 2] or unobservables [Realm 3] (p. 194). 
9. “...[T]he increase in accuracy of our predictions and measurements is a function of how well the models upon which the theories we use to make 

these predictions and measurements depict nature” (p. 194). 
10. “...[S]cientific progress serves as a measure of the extent our theories are getting closer to the truth” (p. 194). 
11. “...[C]onvergent realism is not necessarily committed to using verisimilitude to explain scientific progress, it is committed to the view that there is a 

functional relationship between the two, that as our theories are getting closer to the truth we are reducing the error or our predictions and 
measurements and vice versa” (p. 194–195). 

12. “...[The] relationship between theory and prediction, on the one hand, and between nature and the way it behaves, on the other, remains the same as 
we move from observables to possible observables to unobservables in principle” (p. 196). 

 
† Paraphrased and quoted from Aronson, Harré and Way (1994). 
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        Table 7. Stauffer’s Table Showing the Probability π given p and K † 
 

 p  K = 2  K = 3  K = 4 
 
   0  1  1  1 
   0.05  0.995  0.9892  0.9718 
   0.10  0.9838  0.9554  0.8770 
   0.15  0.9675  0.8997  0.7313 
   0.20  0.9488  0.8268  0.5655 
   0.25  0.9297  0.7440  0.4072 
   0.30  0.9118  0.6599  0.2739 
   0.35  0.8965  0.5832  0.1730 
   0.40  0.8848  0.5219  0.1048 
   0.45  0.8775  0.4824  0.0661 
   0.5  0.8750  0.46875   0.0536 
 † Reproduced from Stuaffer (1987a) p.. 

 
Table 8. Simplifying Assumptions Underlying the NK[C] Model 

——————————————————————————————————————— 
1. A species, S, which is a population, is treated as a single homogeneous entity. “Simulations of coevolving systems are carried out under the assumption 

that each species acts in turn, in the context of the current state of the other species.” (Kauffman 1993, p. 245; his italics). Kauffman’s simplification of 
species down to a single acting entity is what makes his model applicable to my analysis of firms. Thus, S = number of firms. 

2. The NK model consists of N sites, where each site is interpreted as an independent subunit—also an “agent.” A site for Kauffman is a protein or trait, that 
is, a “part.” For firms, N = number subunits. 

3. Of these 24 subunits, adaptation of a particular subunit is affected by adaptation of a firm’s other subunits. Thus K is a measure of the interdependencies 
among the various potentially changing parts or agents. Thus,  K measures internal coevolutionary density among parts within a firm. Because of the 
interdependencies, the fitness improvement from a particular change may be diminished because of fitness restrictions posed by other parts. 

4. Kauffman terms K a measure of epistatic links (1993, p. 41). He takes a much broader view of their definition than the narrow “allele suppresser effect” 
typical in biology. In fact, he views the effects of multiple alleles so complex that he relies on a random fitness function. My definition of  K as 
interdependencies having either enhancing or suppressing effects seems well within Kauffman’s usage. 

5. The other member of a coevolving pair (gene or species) has a number of proteins or traits, C, which are interdependent with any mutation behavior (or 
lack of it) of a given focal part (protein or trait). C ranges from 1 to 20 in Kauffman’s models. For me, C represents interdependent subunits between a 
pair of competing coevolving firms. Some number of the opponent’s parts (from 1 to 20) might coevolve with a given part of the focal firm. Thus, C 
measures external coevolutionary density among parts between a pair of competing firms. 

6. I keep the Boolean network attribute of Kauffman’s model by assuming that any adaptive walk a firm might make in attempting to improve a particular 
subunit is limited to a “2 alternative” action, A. Any more complicated decision may be reduced to a sequence of binary choices. 

7. Kauffman interprets each “site”, (trait or protein) as an independent “agent”. The fitness contribution of each of any particular agent’s two options, A = 0 
or 1, is randomly assigned a value ranging from 0.0 to 1.0. 

8. The distribution from which fitness values are randomly drawn could affect the outcome. Kauffman (1993: 44) draws his values “from the uniform 
interval between 0.0 and 1.0.” He could have used peaked Gaussian or U-shaped distributions. Kauffman concludes that the statistical features of his 
landscape models are “largely insensitive to the choice made for the underlying distribution” (1993, pp. 44–45). 

9. In coevolutionary simulations, at each time period, the actions of an agent are moderated by the effects of actions by the C agents/parts in the opposing 
firm, as well as the actions of the given firm’s K agents. 

10. One item that may seem awkward for my use is Kauffman’s “generation”, that is time period. When Kauffman lets a model run 8000 generations or so, it 
seems reasonable. For organizations, even 2000 time periods may seem long. Length here depends on how “micro” an adaptive walk takes place at each 
time period. Following Barney (1994) I focus on  “micro” decisions rather than “big” decisions (more on this in the Discussion). 

11. In Kauffman’s coevolutionary games, at each time period an agent assesses its current fitness, the fitness of  K other internal agents, and picks a “one-
change” neighbor (defined in Table 7) offering higher fitness, assuming that the K other agents do not change their action, A. In this game, no foresight is 
allowed. 

12. Since there is no foresight, “in this limit of pure strategies, the dynamics of the myopic coevolutionary game is [sic] identical to that of a random Boolean 
network” (Kauffman 1993, p. 240; his italics). A “steady state in this game corresponds to a pure strategy Nash equilibrium (Nash 1951)” (1993, p. 240; 
his italics). 

13. In Kauffman’s model it is possible for Nash equilibria to occur at less than optimum fitness levels for individual agents and for the entire system. 
Kauffman also allows for the possibility that subgroups of agents might become “frozen” in a particular Nash equilibrium fitness level, while other agents 
continue to coevolve, though not necessarily to Nash equilibria at improved fitness levels. 

——————————————————————————————————————— 
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Table 9. Defining an Adaptive Chainscape † 
——————————————————————————————————————— 
1. The models I use assume laptop makers all use N = 24 value chain elements as “parts,” that is, agents. 

2. Each of the N chain agents (each representing a competence) has two choices—stay the same or change. Thus, A = 2. For example, a “2-alternative” site 
could have an “DOS” competence and a “UNIX” competence, each with its own fitness value, either of which might change. 

3. For a given firm’s value chain of length N, and given a rule of only “one- change” allowed per time period for any agent trying to copy improved 
microstates seen in a neighboring agent, there are AN “one-change neighbor” microagents, each of which is different from a given microagent at only one 
competence point or locus, that is, in my case 2N neighbor microagents. What this means is that instead of a firm having one neighboring value chain that 
is different on, say, 10 out of 24 competencies, it is defined as having ten neighboring microagents, each differing by only one competence, and each 
microagent can adopt only one improvement per period. 

4. A “chainspace” is, thus, a multidimensional landscape where each site represents one microagent and each site is next to AN one-change neighbor 
microagents to that site—in my case, 2N. Given A = 2 and N = 24, the landscape is a multidimensional lattice comprising 16,777,216 microstates. 

5. The dimensionality, D, of a chainspace is, therefore, defined as N(A−1). 

6. Evolution is defined as an adaptive walk through a chainspace where a firm improves the parts of its chain at each time period by surveying all the one-
change neighboring microagents and selecting one offering improved fitness. 

7. Given that how each competence interacts with all the N(A−1) other competencies is very complex and unpredictable, the simulations model their 
statistical features by using a fitness function where a value between 0.0 and 1.0 is randomly selected and assigned to each competence alternative. 

8. Agents may have one or more interdependencies (epistatic links) to other agents which may inhibit the fitness value of a changed competence. For 
example, a notebook firm’s chances of improving reliability may be inhibited by adoption of a leading edge experimental competence conserving battery 
power, or enhanced by staying with an older well understood competence in active matrix screen technology. 

9. Given K other chain competencies that are epistatically linked, the AK+1 fitness contributions at any given locus wi are also exceedingly complex and 
unpredictable and so are also randomly assigned values 0.0 to 1.0. 

10. The total fitness value of a chain vector is the average of all its N loci, wj. 

11. Given two coevolving firms 1 and 2, randomly selected values 0.0 to 1.0 are assigned to represent the effect on firm 1 that competencies, C, from firm 2 
(that are epistatically linked to firm 1), might have. 

12. In these models the sizes of both K and C remain the same for all chain loci and their effects may inhibit or enhance fitness values at any chain locus. 

13. The effect of C is that the landscapes of both firms 1 and 2 are mutually causal. 

† Kauffman 1993, pp. 33–45. 
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