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Since the death of positivism in the 1970s, philosophers have turned their attention to scientific realism, evolutionary epistemology, and the Semantic 
Conception of Theories. Building on these trends, Campbellian Realism allows social scientists to accept real-world phenomena as criterion variables against 
which theories may be tested without denying the reality of individual interpretation and social construction. The Semantic Conception reduces the importance 
of axioms, but reaffirms the role of models and experiments. In addition, philosophers now see models as “autonomous agents” that exert independent 
influence on the development of a science, in addition to theory and data. The inappropriate molding effects of mathematical models on social behavior 
modeling are noted. Complexity science offers a “new” normal science epistemology focusing on order-creation by self-organizing heterogeneous agents—and 
featuring agent-based models. The more responsible core of postmodernism builds on the idea that agents operate in a constantly changing web of 
interconnections among other agents. The connectionist agent-based models of complexity science draw on the same conception of social ontology as do 
postmodernists. The recent trends in philosophy of science, the notion of models as autonomous agents, the new normal science epistemology from complexity 
science, connectionist postmodernist ontology, and use of agent-based in place of mathematical models combine to provide foundations for a “new” social 
science centered on formal modeling not requiring the mathematical assumptions of agent homogeneity and equilibrium conditions. Together these foundations 
give “new” social science a level of institutional legitimacy in scientific circles that current social science approaches lack. 

1 INTRODUCTION 
The last time I looked, a theoretical model could 

predict the charge on an electron (really an average) out to 
the 12th decimal place and an experimenter could produce 
a real-world number out to the 12th decimal place—and 
they agreed at the 7th decimal place. Recent theories of 
genetic structure coupled with lab experiments now single 
out genes that cause things like sickle-cell anemia. These 
outcomes look like science in action and are treated as 
such. There is rock-hard institutional legitimacy within 
universities and among user communities around the world 
given to the physics of atomic particles, genetic bases of 
health and illness, theories expressed as axiom-based 
mathematical equations, and experiments. It has been so 
for a century. John Casti (2001), a mathematician, shows 
up at the Marschak Colloquium at UCLA, advocating 
agent-based modeling in social science and an elderly 
gentleman asks, “So, where is the universal solution?” 
Which is to ask, Where is the science? Agent modelers 
show up at our Dean’s office asking for funding with 
computer screens in which agents dance on multicolor 
grids and GUIs (graphical user interfaces) produce charts 
that seem to grow magically from left to right, with 
multiple lines dancing up and down, as time progresses. 
Our Dean looks at the computer screen and his facial 
expression asks, Where is the science? No funds are 
forthcoming. 

A recent citation search compared 5400 social science 
journals against the 100 natural science disciplines 
covered by INSPEC (over 4000 journals) and Web of 
Science (over 5700 journals) Indexes (Henrickson 2002). 
It shows keywords comput* and simulat* peak at around 
18,500 in the natural sciences while they peak at 250 in 
economics and around 125 in sociology. For the keyword, 

nonlinear, citations peak at 18,000 in natural science, at 
roughly 180 in economics, and near 40 in sociology. How 
can it be that sciences founded on the mathematical linear 
determinism of classical physics have moved more quickly 
toward the use of nonlinear computer models than 
economics and sociology—where the agents doing the 
science are no different than the social actors that ARE the 
Brownian Motion? 

Writ large, social sciences appear to seek improved 
scientific legitimacy by copying the century old linear 
deterministic modeling of classical physics—with 
economics in the lead (Mirowski 1989, Hinterberger 
1994)—at the same time natural sciences strongly rooted 
in linear determinism are trending toward nonlinear 
computational formalisms (McKelvey 1997, Henrickson 
2002). The postmodernist solution takes note of the 
heterogeneous-agent ontology of social phenomena, 
calling for abandoning classical normal science 
epistemology and its assumptions of homogeneous agent 
behavior, linear determinism, and equilibrium. 
Postmodernists seem unaware of the “new” normal science 
alternative being unraveled by complexity scientists who 
assume, and then model, autonomous heterogeneous agent 
behavior, and from this model, study how supra-agent 
structures are created (Kauffman 1993, 2000, Cowan 
1994). Social scientists need to thank postmodernists for 
constantly reminding us about the reality of heterogeneous 
social agent behavior. But they need to stop listening to 
postmodernists at this point and study the epistemology of 
“new” normal science instead, specifically the order-
creation aspects of complexity science (Kauffman 1993, 
Mainzer 1997, McKelvey 1999a, 2001d, e). Finally social 
scientists need to take note of the other nonpostmodernist 
postpositivisms that give legitimacy: scientific realism, 
evolutionary epistemology, and the model-centered science 
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of the Semantic Conception (Suppe 1989, Azevedo 1997, 
McKelvey 1999c, 2000b, 2001c). 

Though the “postpositivism” term is often used to refer 
to movements such as relativism, poststructuralism, critical 
theory, postmodernism, and the like, another trail of 
postpositivisms is shown in Figure 1. In addition to a more 
fluid view of the interrelation of theory and observation 
terms, scientific realism and Semantic Conception of 
Theories have further developed since 1977. Together 
these lead to a reaffirmation of a realist, model-centered 
epistemology. This is the new message from philosophy to 
social science on which I now focus. 

In what follows I begin by describing recent trends in 
philosophy of science, starting with Suppe’s (1977) 
epitaph for positivism. Next I present the most recent view 
of the role of models in science espoused by Morgan and 
Morrison (2000) and colleagues. Then I outline 
complexity science, emphasizing its order-creation core, as 
a means of framing the elements of “new” normal science 
concerns and epistemology—a theme starting with 
Mainzer (1997) and resting on foundational theories by 
other leading theorists including Ilya Prigogine, Ross 
Ashby, Jack Cohen, Edward Lorenz, Hermann Haken, 
Murray Gell-Mann, Stewart Kauffman, Stanley Salthe, and 
Ian Stewart. My connection of postmodernist ontology 
with “new” normal science ontology comes next (Cilliers 
1998). Finally, I use this logic chain to establish the 
institutional legitimacy of agent-based social science 
modeling and its rightful claim at the center of “new” 
Social Science. 

>>> Insert Figure 1 about here <<< 
2.1 Realism 

From the positivist legacy a model-centered 
evolutionary realist epistemology has emerged. Elsewhere 
(McKelvey 1999c), I argue that model-centered realism 
accounts to the legacy of positivism and evolutionary 
realism accounts to the dynamics of science highlighted by 
relativism, all under the label Campbellian Realism. 
Campbell’s view may be summarized into a tripartite 
framework that replaces the historical relativism of Kuhn 
(1962) and Feyerabend (1975) for the purpose of framing 
a dynamic realist epistemology. First, much of the 
literature from Lorenz (1941) forward has focused on the 
selectionist evolution of the human brain, our cognitive 
capabilities, and our visual senses (Campbell, 1974, 1988), 
concluding that these capabilities do indeed give us 
accurate information about the world we live in (reviewed 
by Azevedo, 1997). 

2 POST-POSITIVIST PHILOSOPHY OF 
SCIENCE 

Nothing seems to me less likely than that a scientist or mathematician 
who reads me should be seriously influenced in the way he works. 
(Wittgenstein, quoted by Weinberg, 1993, p. 167.) 
The insights of philosophers have occasionally benefited physicists…by 
protecting them from the preconceptions of other philosophers…. 
We should not expect [philosophy of science] to provide scientists with 
any useful guidance…. (Weinberg, 1993, pp. 166–167.) 

Second, Campbell (1991, 1994) draws on the 
hermeneuticists’ coherence theory in a selectionist fashion 
to argue that over time members of a scientific community 
(as a tribe) attach increased scientific validity to an entity 
as the meanings given to that entity increasingly cohere 
across members. This process is based on hermeneuticists’ 
use of coherence theory to attach meaning to terms 
(Hendrickx, 1999). This is a version of the social 
constructionist process of knowledge validation that 
defines Bhaskar’s use of transcendental idealism and the 
sociology of knowledge components in his scientific 
realist account. The coherentist approach selectively 
winnows out the worst of the theories and thus approaches 
a more probable truth. 

While philosophy originally came before science, since 
Newton at least, philosophers have been following along 
behind with their reconstructed logic (Kaplan 1964) of 
how good science works. But there is normal science and 
then there is social science. Like philosophy of science, 
social science always seems to follow older normal science 
epistemology—but searching for institutional legitimacy 
rather than reconstructed logic. At the end of the 20th 
century, however, (1) normal science is leading efforts to 
base science and epistemology directly on the study of 
heterogeneous agents, thanks to complexity science; and 
(2) philosophy of science is also taking great strides to get 
out from under the classical physicists’ view of science. 
Social science lags—especially the modeling side—mostly 
still taking its epistemological lessons from classical 
physics. At this time, useful lessons for enhancing social 
science legitimacy are emerging from both normal science 
and philosophy of science. I start with the latter. 

Third, Campbell (1988, 1991) and Bhaskar (1975) 
combine scientific realism with semantic relativism. Nola 
(1988) separates relativism into three kinds: 
1. “Ontological relativism is the view that what exists, whether 
it be ordinary objects, facts, the entities postulated in science, 
etc., exists only relative to some relativizer, whether that be a 
person, a theory or whatever” (1988, p. 11)—[ontologically 
nihilistic]. 

Though Suppe (1977) wrote the epitaph on positivism 
and relativism, a positivist legacy remains, details of which 
are discussed by Suppe and McKelvey (1999c). The idea 
that theories can be unequivocally verified in search for a 
universal unequivocal “Truth” is gone. The idea that 
“correspondence rules” can unequivocally connect theory 
terms to observation terms is gone. The role of axioms as a 
basis of universal Truth absent empirical tests is negated. 
The importance of models and experiments is reaffirmed.  

2. Epistemological relativisms may allege that (1) what is 
known or believed is relativized to individuals, cultures, or 
frameworks; (2) what is perceived is relative to some 
incommensurable paradigm; (3) there is no general theory of 
scientific method, form of inquiry, rules of reasoning or evidence 
that has privileged status.  Instead they are variable with respect 
to times, persons, cultures, and frameworks (1988, pp. 16−18)—
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[epistemologically nihilistic]. The epistemological directions of Campbellian realism 
have strong foundations in the scientific realist and 
evolutionary epistemology communities (see Azevedo, 
1997). The one singular advantage of realist method is its 
empirically based, self-correcting approach to the 
discovery of truth (Holton, 1993). While philosophers 
never seem to agree exactly on anything, nevertheless, 
broad consensus does exist that these statements reflect 
what is best about current philosophy of science.  

3. Semantic relativism holds that truth and falsity are 
“…relativizable to a host of items from individuals to cultures 
and frameworks.  What is relativized is variously sentences, 
statements, judgements or beliefs” (1988, p. 14)—[semantically 
weak]. 

Nola observes that Kuhn and Feyerabend espouse both 
semantic and epistemological relativism. Relativisms1 
familiar to social scientists range across all three kinds, 
that is, from ontological nihilism to semantic. Campbell 
clearly considers himself a semantic relativist in addition 
to being an ontological realist (Campbell and Paller 1989). 
This produces an ontologically strong relativist dynamic 
epistemology. In this view the coherence process within a 
scientific community continually develops in the context 
of selectionist testing for ontological validity. The socially 
constructed coherence enhanced theories of a scientific 
community are tested against real-world phenomena (the 
criterion variable against which semantic variances are 
eventually narrowed and resolved), with a winnowing out 
of the less ontologically correct theoretical entities. This 
process, consistent with the strong version of scientific 
realism proposed by de Regt (1994), does not guarantee 
error free “Truth” (Laudan 1981) but it does move science 
in the direction of increased verisimilitude (truthlikeness). 

To date evolutionary realism has amassed a 
considerable body of literature, as reviewed by Hooker 
(1987, 1995) and Azevedo (1997). Along with Campbell, 
and Lawson’s (1997) realist treatment of economics, 
Azevedo stands as principal proponent of realist social 
science. Key elements of her “mapping model of 
knowledge” are shown in Table 1. Though it might seem 
that the Campbellian Realist approach is more model-
centered than hers, nothing is more central in Azevedo’s 
analysis than the mapping model—making her 
epistemology just as model-centered as mine (and Read’s 
1990). Furthermore, both of us emphasize isolated 
idealized structures. Her analysis greatly elaborates the 
initial social constructionist applications of realism to 
social science by Bhaskar (1975) and Campbell (1991, 
1994) and accounts for heterogeneous agent behavior as 
well.  Campbellian realism is crucial because elements of 

positivism and relativism remain in social science. 
Campbell’s epistemology folds into a single epistemology: 
(1) dealing with metaphysical terms, (2) objectivist 
empirical investigation, (3) recognition of socially 
constructed meanings of terms, and (4) a dynamic process 
by which a multiparadigm discipline might reduce to fewer 
but more significant theories. 

>>> Insert Table 1 about here <<< 
2.2 The New “Model-Centered” Epistemology 

In my development of Campbellian Realism 
(McKelvey 1999c) I show, that model-centeredness is a 
key element of scientific realism, but I do not develop the 
argument. In this section, I flesh out the development of a 
model-centered social science by defining the semantic 
conception and close with a scale of scientific excellence 
based on model-centering. As Cartwright put it initially: 
“The route from theory to reality is from theory to model, 
and then from model to phenomenological law” (1983, p. 
4; my italics). The shift from Cartwright’s earlier view of 
models as passive reflections of theory and data to models 
as autonomous agents mediating between theory and 
phenomena reaches fullest expression in Cartwright 
(2000), Morgan and Morrison (2000), Morrison (2000), 
Morrison and Morgan (2000), as they extend the semantic 
conception. I discuss this further in Section 3. 

Campbell defines a critical, hypothetical, corrigible, 
scientific realist selectionist evolutionary epistemology as 
follows: (McKelvey 1999c, p. 403) 
1. A scientific realist postpositivist epistemology that maintains the 
goal of objectivity in science without excluding metaphysical terms and 
entities. 
2. A selectionist evolutionary epistemology governing the winnowing 
out of less probable theories, terms, and beliefs in the search for increased 
verisimilitude may do so without the danger of systematically replacing 
metaphysical terms with OPERATIONAL TERMS. 
3. A postrelativist epistemology that incorporates the dynamics of 
science without abandoning the goal of objectivity. 
4. An objectivist selectionist evolutionary epistemology that includes 
as part of its path toward increased verisimilitude the inclusion of, but 
also the winnowing out of the more fallible, individual interpretations and 
social constructions of the meanings of theory terms comprising theories 
purporting to explain an objective external reality. 

 

                                                

Models may be iconic or formal. Most social science 
lives in the shadow of economics departments dominated 
by economists trained in the context of theoretical 
(mathematical) economics. Because of the axiomatic roots 
of theoretical economics, I discuss the axiomatic 
conception in epistemology and economists’ dependence 
on it. Then I turn to the semantic conception, its rejection 
of the axiomatic definition of science, and its replacement 
program. 

 

1 Includes ontologically and/or epistemologically nihilistic subjectivist 
postpositivisms such as ethnomethodology, historicism, radical 
humanism, phenomenology, semioticism, literary explicationism, 
hermeneuticism, critical theory, and postmodernism, all of which are 
“post” positivist and in which subjective and cultural forces dominate 
ontological reality. Lincoln and Guba (1985, p. 7) use the term 
“naturalism” to encompass a similar set of postpositivist paradigms. 

2.2.1 THE AXIOMATIC SYNTACTIC TRADITION 
Axioms are defined as self-evident truths comprised of 

primitive syntactical terms. Thus, in Newton’s second law, 
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F = ma, most any person can appreciate the reality of 
force—how hard something hits something else, mass—
how heavy something is, and acceleration—whether an 
object is changing its current state of motion. And the 
three terms, force, mass, and acceleration cannot be 
decomposed into smaller physical entities defined by 
physicists—they are primitive terms this sense (Mirowski, 
1989, p. 223). A formal syntactic language system starts 
with primitives—basic terms, definitions, and formation 
rules (e.g., specifying the correct structure of an equation) 
and syntax—in F = ma the syntax includes F, m, a, = and 
× (implicit in the adjoining of ma). An axiomatic formal 
language system includes definitions of what is an axiom, 
the syntax, and transformation rules whereby other 
syntactical statements are deduced from the axioms. 
Finally, a formal language system also includes a set of 
rules governing the connection of the syntax to real 
phenomena by such things as measures, indicators, 
operational definitions, and correspondence rules all of 
which contribute to syntactic meaning. 

 

The science of analytical mechanics (Lanczos, 1970) is 
the classical physics example of theories being governed 
by an axiomatic syntactic formalized language. It began 
with the three laws of motion and the law of gravitational 
attraction (Thompson, 1989, p. 32–33): 
1. Every entity remains at rest or in uniform motion unless acted upon 
by an external unbalanced force; 
2. Force equals mass times acceleration (F = ma); 
3. For every action there is an equal and opposite reaction; 
4. The gravitational force of attraction between two bodies equals the 
gravitational constant (G = 6.66×10–s dyne cm.2/gm.2) times the product 
of their masses (m1m2) divided by the square of the distance between them 
(d 2), that is, F = G (m1m2/d 2). 

During the 22 decades between Newton’s Principia 
(circa 1687) and initial acceptance of quantum and 
relativity theory, physicists and eventually philosophers 
discovered that the syntax of these basic axioms and 
derived equations led to explanations of Kepler’s laws of 
planetary motion, Galileo’s law of free fall, heat/energy 
(thermodynamic) laws, electromagnetic force (Maxwell’s 
equations), and thence into economics (Mirowski, 1989). 
Based on the work of Pareto, Cournot, Walras, and 
Bertrand, economics was already translating physicists’ 
thermodynamics into a mathematicized economics by 
1900. By the time logical positivism was established by 
the Vienna Circle circa 1907 (Ayer, 1959; Hanfling, 
1981), science and philosophy of science believed that a 
common axiomatic syntax underlay much of known 
science—it connected theories as far removed from each 
other as motion, heat, electromagnetism, and economics to 
a common set of primitives. Over the course of the 20th 
century, as other sciences became more formalized, 
positivists took the view that any “true” science ultimately 
reduced to this axiomatic syntax (Nagel, 1961; Hempel, 
1965)—the origin of the “Unity of Science” movement 
(Neurath and Cohen, 1973; Hanfling, 1981). 

Now, the axiomatic requirement increasingly strikes 
many scientists as more straight-jacket than paragon of 

good science. After quantum/relativity theories, even in 
physics Newtonian mechanics came to be seen as a study 
of an isolated idealized simplified physical world of point 
masses, pure vacuums, ideal gases, frictionless surfaces, 
linear one-way causal flows, and deterministic 
reductionism (Suppe, 1989, p. 65–68; Gell-Mann, 1994). 
But biology continued to be thought—by some—as 
amenable to axiomatic syntax even into the 1970s 
(Williams, 1970, 1973; Ruse, 1973). In fact, most formal 
theories in modern biology are not the result of axiomatic 
syntactic thinking. Biological phenomena do not reduce to 
axioms. For example, the Hardy-Weinberg “law,” the key 
axiom in the axiomatic treatments of Williams and Ruse is: 

  p AA Aa
N

=
+ 1 2/ ,     

where p = gene frequency, A & a are two alleles or states 
of a gene, and N = number of individuals. It is taken as 
prerequisite to other deterministic and stochastic 
derivations. But instead of being a fundamental axiom of 
evolutionary theory, it is now held that this “law,” like all 
the rest of biological phenomena is a result of evolution, 
not a causal axiom (Beatty, 1981, p. 404–405). 

The so-called axioms of economics also suffer from 
the same logical flaw as the Hardy-Weinberg law. 
Economic transactions appear to be represented by what 
Mirowski refers to as the “heat axioms.” Thus, Mirowski 
shows that a utility gradient in Lagrangian form, 
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is of the same form as the basic expression of a force field 
gradient, 
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As Mirowski (1989: 30–33) shows, this expression derives 
from the axiom F = ma. Suppose that, analogous to the 
potential or kinetic energy of planetary motion defined by 
the root axiom F = ma, an individual’s movement through 
commodity space (analogous to a rock moving through 
physical space) is U = ip, (where i = an individual, p = 
change in preference). The problem is that Newton’s 
axiom is part of the causal explanation of planetary 
motion, but the economists’ axiom could be taken as the 
result of the evolution of a free market capitalist economy 
(steered by Alan Greenspan?), not as its root cause. 
Parallel to a Newtonian equivalent of an isolated physical 
system where axioms based on point masses and pure 
vacuums, etc., are effective, the axiom, U = ip, works quite 
well in an isolated idealized capitalist economy—but as we 
have discovered recently—not in Russia. This “axiom” is 
not a self-evident expression that follows an axiomatic 
syntax common to all “real” sciences. It is the result of 
how economists think an economy ought to behave, not 
how economic systems actually behave universally. 
Economists are notorious for letting ought dominate over 
is (Redman, 1991). Orthodox economic theory still is 
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From Axioms to Phase-Spaces. Following Suppe, I 
will use phase-space instead of Lloyd and Thompson’s 
state-space or Suppes’ set-theory. A phase-space is defined 
as a space enveloping the full range of each dimension 
used to describe an entity. Thus, one might have a 
regression model in which variables such as size 
(employees), gross sales, capitalization, production 
capacity, age, and performance define each firm in an 
industry and each variable might range from near zero to 
whatever number defines the upper limit on each 
dimension. These dimensions form the axes of an n-
dimensional Cartesian phase-space. Phase-spaces are 
defined by their dimensions and by all possible 
configurations across time as well. They may be defined 
with or without identifying underlying axioms—the 
formalized statements of the theory are not defined by how 
well they trace back to the axioms but rather by how well 
they define phase-spaces across various state transitions. 
In the semantic conception, the quality of a science is 
measured by how well it explains the dynamics of phase-
spaces—not by reduction back to axioms. Suppe (1977, p. 
228) recognizes that in social science a theory may be 
“qualitative” with nonmeasurable parameters, whereas 
Giere (1979) says theory is the model (which for him is 
stated in set-theoretic terms—a logical formalism). 
Nothing precludes “improvements” such as 
symbolic/syntactic representation, set-theoretic logic, 
symbolic logic, mathematical proofs, or foundational 
axioms. 

defined by axiomatic syntax (Blaug, 1980; Hausman, 
1992). Sporadic axiomatic attempts in linguistics 
(Chomsky, 1965), various behavioral and social sciences, 
and even in organization theory (Hage, 1965) have all 
failed. So much so that following the Kuhnian revolution 
the many social scientists took historical relativism as 
license to emphasize the various “alternative” relativist 
postpositivisms (Hunt, 1991). 

In logical positivism, formal syntax is “interpreted” or 
given semantic meaning via correspondence rules (C-
rules). For positivists, theoretical language, VT , expressed 
in the syntax of axiomaticized formal models becomes 
isomorphic to observation language, VO, as follows 
(Suppe, 1977, p. 16): 

The terms in VT are given an explicit definition in terms of 
VO by correspondence rules C—that is, for every term ‘F’ in 
VT, there must be given a definition for it of the following 
form: for any x, Fx ≡ Ox. 

Thus, given appropriate C-rules, scientists are to assume 
VT in an “identity” relation with VO. 

In the axiomatic conception of science one assumes 
that formalized mathematical statements of fundamental 
laws reduce back to a basic set of axioms and that the 
correspondence rule procedure is what attaches discipline-
specific semantic interpretations to the common 
underlying axiomatic syntax. The advantage of this view is 
that there seems to be a common platform to science and a 
rigor of analysis results. This conception eventually died 
for three reasons: (1) Axiomatic formalization and 
correspondence rules, as key elements of logical 
positivism, proved untenable and were abandoned; (2) 
Newer 20th century sciences did not appear to have any 
common axiomatic roots and were not easily amenable to 
the closed-system approach of Newtonian mechanics; and 
(3) Parallel to the demise of the Received View, the 
semantic conception of theories developed as an 
alternative approach for attaching meaning to syntax. 

 

Isolated Idealized Structures. Semantic conception 
epistemologists observe that scientific theories never 
represent or explain the full complexity of some 
phenomenon. A theory may claim to provide a generalized 
description of the target phenomena, say, the behavior of a 
firm, but no theory ever includes so many variables and 
statements that it effectively accomplishes this. A theory 
(1) “does not attempt to describe all aspects of the 
phenomena in its intended scope; rather it abstracts certain 
parameters from the phenomena and attempts to describe 
the phenomena in terms of just these abstracted 
parameters” (Suppe, 1977, p. 223); (2) assumes that the 
phenomena behave according to the selected parameters 
included in the theory; and (3) is typically specified in 
terms of its several parameters with the full knowledge 
that no empirical study or experiment could successfully 
and completely control all the complexities that might 
affect the designated parameters. Suppe (1977, p. 223–
224) says theories invariably explain isolated idealized 
systems (his terms). And most importantly, “if the theory is 
adequate it will provide an accurate characterization of 
what the phenomenon would have been had it been an 
isolated system….” Using her mapping metaphor, 
Azevedo (1997) explains that no map ever attempts to 
depict the full complexity of the target area—it might 
focus only on rivers, roads, geographic contours, arable 
land, or minerals, and so forth—seeking instead to satisfy 
the specific interests of the map maker and its potential 
users. Similarly for a theory. A theory usually predicts the 

2.2.2 ESSENTIAL ELEMENTS OF THE SEMANTIC 
CONCEPTION 

Parallel to the fall of The Received View (Putnam’s 
(1962) term combining logical positivism and logical 
empiricism) and its axiomatic conception, and starting 
with Beth’s (1961) seminal work dating back to the 
Second World War, we see the emergence of the semantic 
conception of theories, Suppes (1961), Suppe (1977, 
1989), van Fraassen (1970), and Giere (1979, 1988). 
Cartwright’s (1983) “simulacrum account” follows, as 
does the work of Beatty (1987), Lloyd (1988), and 
Thompson (1989) in biology; Read (1990) in 
anthropology. Suppe (1989, p. 3) says, “The Semantic 
Conception of Theories today probably is the 
philosophical analysis of the nature of theories most 
widely held among philosophers of science.” Lambert and 
Brittan (1987, pp. 145–146) say, “No clear objections…to 
the semantic view have yet emerged.” I present four key 
aspects: 
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progression of the idealized phase-space over time, 
predicting shifts from one abstraction to another under the 
assumed idealized conditions. 

Classic examples given are the use of point masses, 
ideal gasses, pure elements and vacuums, frictionless 
slopes, and assumed uniform behavior of atoms, 
molecules, genes, and rational actors. Laboratory 
experiments are always carried out in the context of closed 
systems whereby many of the complexities of real-world 
phenomena are ignored—manipulating one variable, 
controlling some variables, assuming others are 
randomized, and ignoring the rest. They are isolated from 
the complexity of the real world and the systems 
represented are idealized. Idealization also could be in 
terms of the limited number of dimensions, the assumed 
absence of effects of the many variables not included, or 
the mathematical formalization syntax, the unmentioned 
auxiliary hypotheses relating to theories of experiment, 
data, and measurement. 

 

Model-Centered Science and Bifurcated Adequacy 
Tests. Models comprise the core of the semantic 
conception. Figure 2a portrays the axiomatic conception: 
(1) Theory is developed from its axiomatic base;  (2) 
Semantic interpretation is added to make it meaningful in, 
say, physics, thermodynamics, or economics; (3) Theory is 
used to make and test predictions about the phenomena; 
and (4) Theory is defined as empirically and ontologically 
adequate if it both reduces to the axioms and is 
instrumentally reliable in predicting empirical results. 
Figure 2b depicts the social science approach: (1) Theory 
is induced after an investigator has gained an appreciation 
of some aspect of social behavior; (2) An iconic model is 
often added to give a pictorial view of the interrelation of 
the variables, show hypothesized path coefficients, or 
possibly a regression model is formulated; (3) The model 
develops in parallel with the theory as the latter is tested 
for empirical adequacy by seeing whether effects predicted 
by the theory can be discovered in the real-world. Figure 
2c illustrates the semantic conception: (1) Theory, model, 
and phenomena are viewed as independent entities; (2) 
Science is bifurcated into two not unrelated activities, 
analytical and ontological adequacy (see also Read 1990). 
My view of models as centered between theory and 
phenomena sets them up as autonomous agents, consistent 
with Morrison (2000), Cartwright (2000), and others in 
Morgan and Morrison (2000)—though I see model 
autonomy as coming more directly from the semantic 
conception than do Morrison or Cartwright. 

>>> Insert Figure 2 about here <<< 
Analytical Adequacy focuses on the theory–model 

link. It is important to emphasize that in the semantic 
conception “theory” is always expressed via a model. 
“Theory” does not attempt to use its “If A, then B” 
epistemology to explain “real-world” behavior. It only 
explains “model” behavior. It does its testing in the 
isolated idealized world of the model. “Theory” is not 
considered a failure because it does not become elaborated 

and fully tested against all the complex effects 
characterizing the real-world phenomena. A mathematical 
or computational model is used to structure up aspects of 
interest within the full complexity of the real-world 
phenomena and defined as “within the scope” of the 
theory, and as Azevedo (1997) notes, according to the 
theoretician’s interests. Then the model is used to test the 
“If A, then B” propositions of the theory to consider how a 
social system—as modeled—might behave under various 
possibly occurring conditions. Thus, a model would not 
attempt to portray all aspects of, say, school systems—
only those within the scope of the theory being developed. 
And, if the theory did not predict all aspects of these 
systems’ behaviors under the various relevant real-world 
conditions it would not be considered a failure. 

Ontological Adequacy focuses on the model–
phenomena link. Developing a model’s ontological 
adequacy runs parallel with improving the theory–model 
relationship. How well does the model represent real-
world phenomena? How well does an idealized wind-
tunnel model of an airplane wing represent the behavior of 
a full sized wing in a storm? How well does a drug shown 
to work on “idealized” lab rats work on people of different 
ages, weights, and physiologies? How well might a 
computational model from biology, such as Kauffman’s 
(1993) NK model that, Levinthal (1997), Baum (1999), 
McKelvey (1999a, b), Yuan and McKelvey (2001) and 
Rivkin (2000) apply to firms, actually represent 
coevolutionary competition in, for example, the laptop 
computer industry? In this case it involves identifying 
various coevolutionary structures, that is, behaviors, that 
exist in industry and building these effects into the model 
as dimensions of the phase-space. If each dimension in the 
model—called model-substructures—adequately 
represents an equivalent behavioral effect in the real 
world, the model is deemed ontologically adequate 
(McKelvey, 2001c). 

Theories as Families of Models. A difficulty 
encountered with the axiomatic conception is the belief 
that only one theory–model conception should build from 
the underlying axioms. In this sense, only one model can 
“truly” represent reality in a rigorous science. Given this, a 
discipline such as evolutionary biology fails as a science. 
Instead of a single axiomatically rooted theory, as 
proposed by Williams (1970) and defended by Rosenberg 
(1985), evolutionary theory is a family of theories 
including theories explaining the processes of (1) 
variation; (2) natural selection; (3) heredity; and (4) a 
taxonomic theory of species (Thompson, 1989, Ch. 1). 
Even in physics, the theory of light is still represented by 
two models: wave and particle. More broadly, in other 
mature sciences there are competing theories/models about 
the age of the universe, the surface of the planet Venus, 
whether dinosaurs were cold or warm blooded, the cause 
of deep earthquakes, the effect of ozone depletion in the 
upper atmosphere, and so on. 

Since the semantic conception does not require 
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axiomatic reduction, it tolerates multiple theories and 
models. Thus, “truth” is not defined in terms of reduction 
to a single model. Set-theoretical, mathematical, and 
computational models are considered equal contenders to 
more formally represent real-world phenomena. In physics 
both wave and particle models are accepted because they 
both produce highly reliable predictions. That they 
represent different theoretical explanations is not a failure. 
Each is an isolated idealized system representing different 
aspects of real-world phenomena. In evolutionary theory 
there is no single “theory” of evolution. In fact, there are 
even lesser families of theories (multiple models) within 
the main families. All social sciences also consist of 
various families of theories, each having families of 
competing models within it. Under the semantic 
conception, social sciences may progress toward improved 
analytical and ontological adequacy with families of 
models and without an axiomatic base.  

 

2.2.3 A GUTTMAN SCALE OF EFFECTIVE SCIENCE 

So far I have identified four nonrelativist 
postpositivisms that remain credible within the present-day 
philosophy of science community: the Legacy of 
positivism, Scientific Realism, Selectionist Evolutionary 
Epistemology, and the Semantic Conception. As a simple 
means of (1) summarizing the most important elements of 
these four literatures; and (2) showing how well social 
science measures up in terms of the institutional legitimacy 
standards inherent in these postpositivisms, I distil seven 
criteria essential to the pursuit of effective science (Figure 
3): 

>>> Insert Figure 3 about here <<< 
The list appears as a Guttman scale. It goes from 

easiest to most difficult. To be institutionally legitimate 
and effective, current epistemology holds that theories in 
social science must be accountable to these criteria. 
Existing strong sciences such as physics, chemistry, and 
biology meet all of them. Many, if not most, social science 
theory applications to social phenomena do not meet any 
but the first and second. This could be why social science 
has so such modest institutional legitimacy from scientific, 
philosophical, and even user communities. 
1. Avoidance of Metaphysical Terms. 

This criterion could have been the most difficult for 
social science to meet. If we were to hold to the “avoid 
metaphysical entities at all costs” standard of the 
positivists, social science would fail even this minimal 
standard since even the basic entity, the social system, is 
hard to put one’s hands on—that is, gain direct knowing 
about. Scientific realists, and especially Aronson, Harré 
and Way (1994), remove this problem by virtue of their 
“principle of epistemic invariance.” They argue that the 
“metaphysicalness” of terms is independent of scientific 
progress toward truth. The search and truth-testing process 
of science is defined as fallibilist with “probabilistic” 
results. Given this, it is less important to know for sure 
whether the fallibility lies (1) with fully metaphysical 

terms (e.g., “corporate strategy”), eventually detectable 
terms (e.g., “idiosyncratic resources”), or as measurement 
error with regard to observation terms (e.g., “# of company 
cars”), or (2) the probability that the explanation or model 
differs from real-world phenomena (discussed in 
McKelvey 2001c). Whatever the reason, empirical 
findings are only true with some probability and selective 
elimination of any error improves the probability. Since 
metaphysicalness has been taken off the table as a standard 
by the scientific realists, it is one standard social science 
meets, if only by default. 
2. Nomic Necessity. 

Nomic necessity holds that one kind of protection 
against attempting to explain a possible accidental 
regularity occurs when rational logic can point to a strong 
relation between an underlying structure—force—that, if 
present, produces the result—if force A, then regularity B. 
Consider the “discovery” that “…legitimization affects 
rates of [organizational] founding and mortality…” 
(Hannan and Carroll, 1992, p. 33). Is this an accidental 
regularity? The posited causal proposition is “If 
legitimacy, then growth.” But, there is no widely agreed 
upon underlying causal structure, mechanism, or process 
that explains the observed regularity (Zucker, 1989). Thus, 
if legitimacy is removed, do (most) growing firms 
disappear? Since there are many firms with no legitimacy 
that have grown rapidly because of a good product, the 
proposition seems false (Baum and Oliver, 1992; and 
Hybels, Ryan and Barley, 1994). 

A different aspect of the theory of population 
dynamics, however, is clearly not an accidental regularity. 
In a niche having defined resources, a population of firms 
will grow almost exponentially when the population is 
small relative to the resources available, and growth will 
approach zero as the population reaches the carrying 
capacity of the niche (Hannan and Freeman, 1989). This 
proposition explains changes in population growth by 
identifying an underlying causal mechanism—the 
difference between resources used and resources 
available—formalized as the Lotka-Volterra logistic 
growth model: ( )KNKrNdtdN // −= . 

In this case, the law came to sociology before the 
discovery of the hypothesized organizational regularities 
since it was imported from theoretical ecology (Levins, 
1968) by Hannan and Freeman (1977), hence the prospect 
of an accidental regularity is reduced. The model expresses 
the underlying causal mechanism and it is presumed that if 
the variables are measured and their relationship over time 
is as the model predicts then the underlying mechanism is 
mostly likely present—truth always being a probability and 
fallible. 
3. Bifurcated Model-Centered Science. 

My use of “model-centeredness” has two meanings: (1) 
Are theories mathematically or computationally 
formalized? and (2) Are models the center of bifurcated 
scientific activities—the theory–model link and 
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the model–phenomena link? A casual review of most 
social science journals I am familiar with appears to 
indicate that social science in general is a long way from 
routinely formalizing the meaning of a theoretical 
explanation, as is common in physics and economics. And 
few data-based empirical studies in social science have the 
mission of empirically testing the real-world fit of a 
formalized model—they mostly try to test unformalized 
hypotheses directly on the full complexity of the real 
world. 

 

4. Experiments. 
Witchcraft, shamanism, astrology, and the like, are 

notorious for attaching post hoc explanations to apparent 
regularities that are frequently accidental—“disaster struck 
in ’38 after the planets were lined up thus and so.” Though 
nomic necessity is a necessary condition, using 
experiments to test the propositions reflecting the law 
(law-like relation) in question is critically important. 
Meeting nomic necessity by specifying underlying causal 
mechanisms is only half the problem, as has been 
discovered with the “legitimacy explanation” in population 
ecology. The post hoc use of “legitimacy” is an example of 
sticking an explanation to an accidental regularity absent 
the correct underlying causal mechanism. Cartwright 
(1983) goes so far as to say that even in physics all 
theories are attached to causal findings—like stamps to an 
envelope. Lalonde (1986) showed that the belief of many 
econometricians—that econometrics substitutes for 
experiments (including even the 2-stage model leading to 
Heckman’s Nobel Prize)—is false. The only recourse is to 
set up an experiment, take away cause A and see if 
regularity B also disappears—add A back in and see if B 
also reappears. In my area of research, organization theory 
and strategy are fields particularly vulnerable to pinning 
theories to accidental regularities. Given that lab studies of 
all but the smallest social systems are borderline 
impossible, naturally occurring quasi-experiments (Cook 
and Campbell 1979) and computational experiments offer 
constructive substitutes. 
5. Separation of Analytical and Ontological Tests. 

This standard augments the nomic necessity, model-
centeredness, and analytical results criteria by separating 
theory-testing from model-testing. In mature sciences 
theorizing and experimenting are usually done by different 
scientists. This assumes that most people are unlikely 
state-of-the-art on both. Thus, if we are to have an 
effective science applied to social systems, we should 
eventually see two separate activities: (1) Theoreticians 
working on the theory–model link, using mathematical or 
computational model development, with analytical tests 
carried out via the theory–model link; and (2) Empiricists 
linking model-substructures to real-world structures. It is 
possible that some researchers would be able to compare 
model analytic results with real-world quasi-experimental 
results, as do many papers in the American Economic 
Review. Without evidence that both of these activities are 
being pursued independently, as per Figure 2c, social 

science will remain with questionable institutional 
legitimacy. The prevailing social science tendency toward 
attempting only direct theory–phenomena adequacy tests 
follows a mistaken view of how effective sciences 
progress. 
6. Verisimilitude via Selection. 

I ranked this standard here because the selection 
process happens only over time. For selection to produce 
any movement toward less fallible truth there need to have 
been numerous trials of theories of varying quality, 
accompanied by tests of both analytical and ontological 
adequacy. So, not only do all of the previous standards 
have to have been met, they have to have been met across 
an extensive mosaic of trial-and-error learning adhering to 
separate analytical and ontological adequacy tests. 
Population ecology meets this standard quite well. As the 
Baum (1996) review indicates, there is a 20 year history of 
theory–model and model–phenomena studies with a steady 
inclination over the years to refine the adequacy of both 
links by the systematic removal of the more fallible 
theories and/or model ideas and the introduction and 
further testing of new ideas. The lack of contrived 
experiments has already been noted—though quasi-
experiments are evident when population regulation 
dynamics are shown to readjust after a technological or 
deregulation discontinuity (Tushman and Anderson 1986, 
Baum, Korn and Kotha 1995). 
7. Instrumental Reliability. 

A glass will fall to earth every time I let go. This is 
100% reliability. Four hundred years ago Kepler, using 
Tyco Brahe’s primitive (pretelescope) instruments, created 
astronomical tables that improved the reliability of 
predicting the locations of planets to within ±1′ compared 
to the up to 5° of error in the Ptolemaic/Copernican tables. 
Classical physics achieves success because its theories 
have high instrumental reliability, meaning that they have 
high analytical adequacy—every time a proposition is 
tested in a properly constructed test situation the theories 
predict correctly and reliably. It also has high ontological 
adequacy because its formal models contain structures or 
phase-space dimensions that very accurately represent 
real-world phenomena “within the scope” of various 
theories used by engineers and scientists for many of their 
studies. Idealizations of models in classical physics have 
high isomorphism with the physical systems about which 
scientists and engineers are able to collect data. But, as 
Gell-Mann (1994) observes, laws in modern physics are 
no longer exact but probabilistic. The more accurate 
physicists’ measures, the more probabilistic their laws! 

It seems unlikely that social science will ever be able to 
make individual event predictions. Even if social science 
moves out from under its archaic view of research—that 
theories are tested by looking directly to real-world 
phenomena—it still will suffer in instrumental reliability 
compared to the natural sciences. The “isolated idealized 
systems” of natural science are more easily isolated and 
idealized, with lower loss of reliability, than 
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those studied by social scientists. Natural scientists’ lab 
experiments more reliably test nomic-based propositions 
and their lab experiments also have much higher 
ontological representative accuracy. In other words, their 
“closed systems” are less different from their “open 
systems” than is true for socio-economic systems. 
Consequently natural science theories will usually produce 
higher instrumental reliability. 

 

The instrumental reliability standard is truly a tough 
one for social science. The good news is that the semantic 
conception makes this standard easier to achieve. Our 
chances improve if we split analytical adequacy from 
ontological adequacy. By having some research focus only 
on the predictive aspects of a theory–model link, the 
chances improve of finding models that test propositions 
with higher analytical instrumental reliability—the 
complexities of uncontrolled real-world phenomena are 
absent. By having other research activities focus only on 
comparing model-structures and processes across the 
model–phenomena link, ontological instrumental 
reliability will also improve. In these activities, reliability 
hinges on the isomorphism of the structures causing both 
model and real-world behavior, not on whether predictions 
occur with high probability. Thus, in the semantic 
conception instrumental reliability now rests on the joint 
probability of two elements: (1) predictive analytic 
reliability; and (2) model-structure reliability, each of 
which is higher by itself.  

Of course, instrumental reliability is no guarantee of 
improved verisimilitude in transcendental realism. The 
semantic conception protects against this with the 
bifurcation above. Instrumental reliability does not 
guarantee “predictive analytical reliability” tests of 
theoretical relationships about transcendental causes based 
on nomic necessity. If this part fails the truth-test fails. 
However, this does not negate the “success” and 
legitimacy of a science resulting from reliable instrumental 
operational-level event predictions even though the theory 
may be false. Ideally, analytic adequacy eventually catches 
up and replaces false theories in this circumstance. 

If a science is not based on nomic necessity and 
centered around (preferably) formalized computational or 
mathematical models it has little chance of moving up the 
Guttman scale. Such is the message of late 20th century 
(postpositivist) philosophy of normal science. This 
message tells us very clearly that in order for social 
science to improve its institutional illegitimacy it must 
become model-centered. The nonlinearity of much of our 
phenomena makes model-centeredness even more 
essential, as Contractor et al. (2000) observe. 

3 MOLDING EFFECTS OF MODELS ON 
SOCIAL SCIENCE 

3.1 MODELS AS AUTONOMOUS AGENTS: 
THE MOLDING EFFECT 

There can be little doubt that mathematical models 
have dominated science since Newton. Further, 

mathematically constrained language (logical discourse), 
since the Vienna Circle circa 1907, has come to define 
good science in the image of classical physics. Indeed, 
mathematics is good for a variety of things in science—
shown in Table 2.  

>>> Insert Table 2 about here <<< 
More broadly, math plays two roles in science. In 

logical positivism (which morphed into logical 
empiricism; Suppe 1977), math supplied the logical rigor 
aimed at assuring the truth integrity of analytical 
(theoretical) statements. As Read (1990) observes, the use 
of math for finding “numbers” actually is less important in 
science than its use in testing for rigorous thinking. But, as 
is wonderfully evident in the various chapters in the 
Morgan and Morrison (2000) anthology, math is also used 
as an efficient substitute for iconic models in building up a 
“working” model valuable for understanding not only how 
an aspect of the phenomena under study behaves (the 
empirical roots of a model) and/or for better understanding 
the interrelation of the various elements comprising a 
transcendental realist explanatory theory (the theoretical 
roots).  

Traditionally, a model has been treated as a more or 
less accurate “mirroring” of theory or phenomena—as a 
billiard ball model might mirror atoms or a barometer 
might mirror prediction of business cycles (van den 
Bogaard 2000). In this role it is a sort of “catalyst” that 
speeds up the course of science but without altering the 
chemistry of the ingredients, as it were. Morgan and 
Morrison et al. take dead aim at this view, however. It is 
perhaps best illustrated in a figure supplied by Boumans 
(2000, p. 93). He observes that Cartwright, in her classic 
1983 book, and Morgan (1988) “…conceive models as 
instruments to bridge the gap between theory and data” (p. 
93). Boumans (and van den Bogaard who also looks at 
early business cycle models) both give ample evidence that 
many ingredients influence the final nature of a model. 
Boumans’ depiction is reproduced as Figure 4. Cartwright 
(2000) and Morgan (2000) concur with the new 
perspective. The Boumans/van den Bogaard analyses are 
based on business cycle models by Kalecki, Frisch and 
Tinbergen in the 1930s and Lukas (1972) that clearly 
illustrate the warping resulting from “mathematical 
molding” for mostly tractability reasons (Boumans p. 90) 
and the influence of the various nontheory and nondata 
ingredients. 

>>> Insert Figure 4 about here <<< 
Models as autonomous agents, thus, gain their 

independence both from (1) math molding and (2) 
influence by all the other ingredients. Since the other 
ingredients could reasonably influence agent-based models 
as well as math models—as formal, symbol-based models, 
and since math models dominate formal modeling in social 
science (mostly in economics)—I now focus only on the 
molding effects of math models rooted in classical physics. 
As is clearly evident from the construction of the four 
previously mentioned business cycle models, Mirowsky’s 

 



Foundations    10

(1989) broad discussion (not included here), and Read’s 
(1990) analysis (below), the math molding effect is 
pervasive. 

1. In linking “empirically defined relationships with mathematically 
defined relationships…[and] the symbolic with the empirical domain…a 
number of deep issues…arise…. These issues relate, in particular, to the 
ability of human systems to change and modify themselves according to 
goals which change through time, on the one hand, and the common 
assumption of relative stability of the structure of …[theoretical] models 
used to express formal properties of systems, on the other hand…. A 
major challenge facing effective—mathematical—modeling of the human 
systems considered by archaeologists is to develop models that can take 
into account this capacity for self-modification according to internally 
constructed and defined goals.” (p. 13) 

The molding effect of math as an autonomous 
model/agent—as developed in classical physics (and 
economics, since its math model emulates the math model 
of classical physics) makes two heroic assumptions: First, 
to use the math model, classical physics takes the 
“instrumentally convenient” homogeneity assumption at 
the lower bound.2 This makes the math more tractable. 
Though Brown (of Brownian Motion) recognized 
heterogeneous agents, Boltzmann set up the continuation 
of the instrumental homogeneity assumption by 
introducing the instrumentally convenient statistical 
mechanics method based on the averaging (across 
heterogeneous agents) assumption. Second, classical 
physics principally studies phenomena under the 
governance of the 1st Law of Thermodynamics, and within 
this Law, the equilibrium assumption. Economics mostly 
emulates this as well (Mirowski 1989). Here the math 
model acts as an accounting methodology describing the 
translation of order from one form to another and 
presumes all phenomena vary around some kind of 
equilibrium. 

2. “In part, the difficulty is conceptual and stems from reifying the 
society as an entity that responds to forces acting upon it, much as a 
physical object responds in its movements to forces acting upon it. For the 
physical object, the effects of forces on motion are well known and a 
particular situation can, in principle, be examined through the appropriate 
application of mathematical representation of these effects along with 
suitable information on boundary and initial conditions. It is far from 
evident that a similar framework applies to whole societies.” (p. 22) 
3. “The linkage between conceptual structure [such as kinship 
terminology] and behavior is, evidently, complex and non-deterministic, 
yet constrained by external conditions. It clearly has aspects open to 
manipulation by individuals or subgroups…but such manipulation is also 
constrained by publicly accepted conceptual structures such as kinship 
termfinology, marriage rules, and the like. This self-evaluation capacity, 
coupled with the ability of the actors in the situation to affect the societal 
means of reproduction, including both material and ideational 
dimensions, makes modeling of societies difficult and hard to reduce, 
assuming it is possible, to deterministic models. When models incorporate 
parameters whose values are fixed, a non-reflective system that does not 
incorporate self-modification is implicitly presumed.” (p. 22) 3.2 MATH’S MOLDING EFFECTS ON 

SOCIOCULTURAL ANALYSIS 4. “Dynamic structural modeling is a powerful framework for 
analyzing the properties of systems, but does not, in and of itself, provide 
the means for analyzing the properties of systems that are self-reflective 
and capable of both affecting and defining how they are going to change, 
as is true of human systems.” (p. 27) 

Read’s (1990) analysis of the applications of math 
modeling in archaeology provides further illustration of 
how the classical physics roots of math modeling and the 
needs of tractability give rise to assumptions that are 
demonstrably antithetical to a correct understanding, 
modeling, and theorizing of human social behavior. 
Though his analysis is ostensibly about archaeology, it 
applies generally to sociocultural systems. Most telling are 
assumptions throughout his paper that combine to show 
just how much social phenomena have to be warped to fit 
the tractability constraints of the rate studies framed within 
math molding process of calculus. These are listed in 
Table 3. They focus on universality, stability, equilibrium, 
external forces, determinism, global dynamics at the 
expense of individual dynamics, and so on. 

5. “Perhaps because culture, except in its material products, is not 
directly observable in archaeological data, and perhaps because the things 
observable are directly the result of individual behavior, there has been 
much emphasis on purported ‘laws’ of behavior as the foundation for the 
explanatory arguments that archaeologists are trying to develop. This, I 
argue, is not likely to succeed. To the extent that there are ‘laws’ 
affecting human behavior, they must be due to properties of the mind that 
are the consequence of selection acting on genetic information. As a 
consequence, ‘laws’ of behavior are inevitably of a different character 
than laws of physics such as F = ma. The latter, apparently, is 
fundamental to the universe itself; behavioral ‘laws’ such as ‘rational 
decision making’ are true only to the extent to which there has been 
selection for a mind that processes and acts upon information in this 
manner…. Without virtually isomorphic mapping from genetic 
information to properties of the mind, searching for universal laws of 
behavior as a means to develop explanatory models of human systems in 
analogy with the role that physical laws have played in physics in 
developing explanatory models of the universe is a chimera.” (p. 28) 

>>> Insert Table 3 about here <<< 
Given the molding effect of all these assumptions it is 

especially instructive to quote Read, the mathematician, 
worrying about equilibrium-based mathematical 
applications to archaeology and sociocultural systems. 

 

                                                

Common throughout these statements are observations 
about “the ability of [reified] human systems to change 
and modify themselves,” be “self-reflective,” respond 
passively to “forces acting” from outside, “manipulation 
by subgroups,” “self-evaluation,” “self-reflection,” 
“affecting and defining how they are going to change,” 
and the “chimera” of searching for “behavioral laws” 
reflecting the effects of external forces. 

 

2 Given a hierarchy of sciences, say, physics, chemistry, biology, 
psychology, economics, sociology, etc., I use “lower bound” to refer to 
the lower boundary of a science or discipline. Sciences traditionally make 
the homogeneity assumption at the lower bound. Thus, economists 
studying aggregate economic phenomena assume firms are all the same or 
all actors are rational; psychologists used to assume that human 
physiology was homogeneous; biologists assume water molecules are all 
the same; classical physicists assumed electrons had the same charge, etc. 
Needless to say, as sciences progress, the lower bound homogeneity 
assumption gets challenged. 

3.3 MOLDING EFFECTS ON ECONOMIC 
ANALYSIS 

The previous “attack” on the homogeneity and 
equilibrium assumptions in Orthodox Economics occurred 
when Nelson and Winter (1982) tried to shift the 
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exemplar science from physics to biology. They argue that 
Orthodoxy takes a static view of order-creation in 
economies, preferring instead to develop the mathematics 
of thermodynamics in studying the resolution of 
supply/demand imbalances within a broader equilibrium 
context. Also, Orthodoxy takes a static or instantaneous 
conception of maximization and equilibrium. Nelson and 
Winter introduce Darwinian selection as a dynamic 
process over time, substituting routines for genes, search 
for mutation, and selection via economic competition. 

 

                                                

Rosenberg (1994) observes that Nelson and Winter’s 
book failed because Orthodoxy still holds to energy 
conservation mathematics (the 1st Law of 
Thermodynamics), the prediction advantages of 
thermodynamic equilibrium, and the latter framework’s 
roots in the axioms of Newton’s orbital mechanics, as 
Mirowski (1989) reports. Also, whatever weakness in 
predictive power orthodoxy has, Nelson and Winter’s 
approach failed to improve it. Therefore, economists had 
no reason to abandon Orthodoxy since, following 
physicists, they emphasize predictive science. Rosenberg 
goes on to note that biologists have discovered that the 
mathematics of economic theory actually fits biology 
better than economics, especially because gene frequency 
analysis meets the equilibrium stability requirement for 
mathematical prediction (p. 398). He notes in addition that 
two other critical assumptions of mathematical economics, 
infinite population size and omniscient agents hold better 
in biology than in economics.  

In parallel, Hinterberger (1994) critiques economic 
orthodoxy and its reliance on the equilibrium assumption 
from different perspective. In his view, a closer look at 
both competitive contexts and economic actors uncovers 
four forces working to disallow the equilibrium 
assumption: 
1. Rapid changes in the competitive context of firms does not allow 
the kinds of extended equilibria seen in biology and classical physics; 
2. There is more and more evidence that the future is best 
characterized by “disorder, instability, diversity, disequilibrium, and 
nonlinearity” (p. 37); 
3. Firms are likely to experience changing basins of attraction—that is, 
the effects of different equilibrium tendencies; 
4. Agent actions coevolve to create higher level structures that then 
become the selection contexts for subsequent agent behaviors. 

Hinterberger’s critique comes from the perspective of 
complexity science. This angle is pursued in much more 
depth in the Santa Fe Institute anthology edited by Arthur, 
Durlauf, and Lane (1997). They note the following 
characteristics of economies, all of which defeat the kind 
of equilibrium essential to predictive mathematics—shown 
in Table 4. They describe economies in terms of 
autonomous, heterogeneous, coevolving, adaptive, agents 
who create novel adaptive solutions, and supervening 
structures in nonequilibrium situations. Despite the book’s 
focus on The Economy as an Evolving Complex System, 
after reviewing all the chapters, most of which rely on 
mathematical modeling, the editors ask, “…In what way 
do equilibrium calculations provide insight into 

emergence?” (p. 12) Clearly, most of the chapters miss the 
essential character of complex adaptive systems stylized in 
the Table. Despite the Santa Fe Institute’s commitment to 
studying nonlinear autonomous heterogeneous agent 
behaviors, equilibrium molding still lingers. 

>>> Insert Table 4 about here <<< 

4 ORDER-CREATION BEFORE THE 1st 
LAW 

4.1 FAST MOTION SCIENCE 
The foregoing critiques have at their heart the question 

whether order-creation in the phenomena studied moves 
fast or slow relative to the equilibrium assumptions by the 
classic mathematical sciences studying 1st Law energy 
translations. Orbital mechanics stay in equilibrium long 
enough—billions of years, more or less—that the 
equilibrium assumption works very well. It works well in 
the biosphere, too, but mainly because we take a slow 
motion view of the tail end of biological evolution. Taking 
a longer view and speeding it up, we discover that 
bioevolution occurs in a very thin layer sandwiched 
between two giant Bénard (1901) cells3—one in the 
atmosphere (Lorenz 1963) and one in the earth’s geology 
of lava plumes and tectonic plate sinks, speculated about 
by Salthe (1993, p. 107) and wonderfully analyzed and 
depicted in an artist’s rendition in Gurnis (2001). The first 
creates the climate on the earth’s surface via heat, deserts, 
wind, storms, rain, floods, and so on. The second is the 
engine creating the biosphere’s geological context—rising 
and sinking continents, plate subductions, ocean trenches, 
volcanoes, mountain ranges, rivers, lakes, valleys, shifting 
landscapes, and ultimately the biological punctuations 
analyzed by Eldredge and Gould (1972). Sped up, order in 
the biosphere results more from the joint effects of both 
giant Bénard processes than it does from Darwinian 
gradualism. Darwinian gradualist selection, as introduced 
into social science, thus, reflects only the relatively static, 
most recent frame in what is really a 3.8 billion year 
movie. But note that the punctuated equilibrium theory 
proposed by Eldredge and Gould (1972) fits with the 
Bénard-type self-organization process and see application 
in social science via the work of Tushman and colleagues.4 

As noted previously, following the view of “models as 
autonomous agents” given by Morgan and Morrison 
(2000), math models now affect the course of social 
science modeling as much as do theory or data. Figure 5 is 
a rather fanciful depiction showing the math model’s 
increasing disconnection from modern social science 
phenomena, represented by the line. As a rough estimate, 

 

3 Consisting of a fluid between hot and cold surfaces; at some critical 
point in the temperature gradient between the plates, circular bulk 
movements of molecules will occur so as to reduce the temperature 
differential—an example of self-organization (Haken 1977). 
4 Tushman and Romanelli, Tushman and Anderson (1986), Tushman and 
Rosenkopf (1992). 
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the Y axis represents the rate at which various phenomena 
erode away from equilibrium—not wobble around some 
central tendency—but are permanently re-ordered. The X 
axis is a sort of log scale, except that it drops by three 
magnitudes per mark—thus, billions (planetary orbits) to 
millions (species) to thousands (socio/cultural/economic 
structures) of years, to changes within a few years (school 
systems, firms), and finally erosions occurring in less than 
one year (single heterogeneous agents ranging from 
particles to molecules to biomolecules, to microbes, to 
human agents). Many readers probably would say that the 
line misrepresents the rate of equilibrium erosion—
preferring instead the curve. 

>>> Insert Figure 5 about here <<< 
4.2 THEORIES OF ORDER-CREATION 

What causes order-creation before 1st Law equilibria 
take hold? And, if new order is caused, what causes it to 
emerge one way and not another? Complexity science is 
about what causes order (Mainzer 1997). Quantum 
entanglement5 as the precursor to emergent order is much 
discussed in physics (Gell-Mann 1994). And the 
primordial pool existing before the origin of life is much 
discussed in biology (Kauffman 1993). As already noted, 
the Darwin/Wallace theory of natural selection (Darwin 
1859) explains speciation in the biological world. 
Durkheim (1893) and Spencer (1898) also defined order as 
the emergence of kinds, specifically, social entities. Half a 
century later, however, Sommerhoff (1950), Ashby (1956, 
1962), and Rothstein (1958) defined order not in terms of 
entities but rather in terms of the connections among them. 
In fact, order doesn’t exist without both.  

 

Particularly for the biological and social worlds, Ashby 
long ago made two observations. Order (organization), he 
said, exists between two entities, A and B, only if this 
relation is “conditioned” by a third entity, C (1962, p. 
255). If C is viewed as the “environment” which is 
external to the relation between A and B, it follows that 
environmental constraints are what cause order (Ashby 
1956). This, then, gives rise to his “Law of Requisite 
Variety” (1956). It holds that for a biological or social 
entity to be efficaciously adaptive, the variety of its 
internal order must match the variety of the environmental 
constraints. Interestingly, he also observes that order does 
not emerge when the environmental constraints are chaotic 
(1956, pp. 131–132). In sum, order-creation is always a 
function of context.  

Within 1st Law energy translations, we observe a stock 
of energy (a tension) in one kind of ordered structure 
flowing at some rate and quantity into another. If there are 
enough agents (particles/molecules) such as in the flow of 

a river, there is no concern as to what motivates each of 
the billions of agents—attention focuses on the flow rate 
past a measuring point. Self-organization theorists, 
however, focus on what motivates individual agents to 
begin to shift from a disordered, disequilibrium state to 
produce some kind of collective, higher-level order 
(Cowan 1994). And, once this happens, there is quickly 
interest in how the higher level affects agent behaviors, 
and from here interest focuses on coevolution: how lower 
level agents affect higher level order and respectively how 
that order alters lower level agent behaviors. In fast-
motion sciences, and particularly in social science where 
agents’ order-creation rates are—in terms of Figure 5—
within the few-year and intra-year ranges, self-
organization questions and analyses may easily dominate, 
though not necessarily make meaningless, slow-motion 
science questions.  

And, of course, as the number of agents studied drops 
from billions to, say, the few hundreds of dotcom firms, or 
the couple firms in the petroleum industry, or the few top 
administrators at the Federal Reserve, analysis of 
coevolutionary agent behaviors and order-creation surely 
dominates the equilibrium methods of slow-motion 
science. 

Complexity science’s emergent-order explanations 
could vary across the physical, biological, and social 
worlds. Since they are hierarchical—in that social entities 
are composed of biological entities that are composed of 
physical entities—the issue of upward vs. downward 
causality also arises. Natural selection is the traditional 
way of explaining how order appears out of the primordial 
probabilistic soup—the selectionist explanation. Leading 
writers about biology, such as Salthe (1993), Rosenberg 
(1994), Eldredge (1996), Ulanowicz (1996), Depew 
(1998), Weber (1998), Conrad (1998), and Kauffman 
(2000) now argue that Darwinian theory is, itself, 
equilibrium bound and not adequate for explaining most 
biological dynamics. Underlying this change in 
perspective is a shift to the study of how heterogeneous 
agents create order in the context of geological and 
atmospheric dynamics. Implicit in this change is a change 
from the slow-motion science of Newtonian classical 
physics—and its mathematics—to the fast-motion science 
necessary to see agent-level order-creation dynamics in 
action. 

To better understand the course of emergent order and 
fast-motion dynamics in bioeconomics, I have reviewed a 
number of well established theories about causes of 
emergent order in physics and biology, some of which 
have been extended into the econosphere (McKelvey 
2001d). I consider explanations of how “order” (what 
Gell-Mann calls coarse-graining) emerges from the fine-
grained structure of entanglement pools and higher-level 
networks, with special focus on the views of Prigogine 
(1955), Ashby (1962), Lorenz (1963), Haken (1977), 
Kelso and colleagues (1992), Salthe (1993), Cohen and 
Stewart (1994), Gell-Mann (1994), Mainzer (1997), 

                                                 

5 Think of quantum entanglement as the interdependence of two particles 
or entities such that neither one can behave or be understood 
independently, and decoherence as the negation of the entanglement 
effect. For an application of entanglement and correlated interdependency 
histories at a human scale, see McKelvey (forthcoming). 
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Omnès (1999), and Kauffman (2000).  
This review produces a set of premises pertaining to 

order-creation that is not the result of variations around 
some equilibrium-driven central tendency:  

 

Bottom-Up Coarse-Graining 
Gell-Mann’s Premise: Contextual effects lead some correlated histories 
in the fine-grained structure to surface as the basis of probabilistic effects 
while the remaining histories are washed out—their effects remaining 
randomized. 
Mainzer’s Premise: Initially tiny quantum chaotic effects can 
accumulate to cause coarse-graining in atoms (even without contextual 
stimulation), and subsequently in higher-level natural phenomena. 
Omnès’s Premise: Externally imposed energy flows (with some reference 
to energy differentials) cause emergent coarse-grained structure from 
entanglement pools—still seen as a reductionist, bottom-up causal 
process. 
Haken’s Premise: At the instability point forced by the 1st critical 
value,Rc1, and, thus, after most degrees of freedom in complex systems 
are enslaved by a very few remaining variables (the order parameters), 
self-organization is driven by variance in the external forces acting on the 
control parameter, R. 6 

Top-Down Coarse-Graining 
Order-Creation 

Cohen & Stewart’s Premise: Laws of nature are coarse grained 
patterns—conditioned by context—that collapse an underlying sea of 
chaos (the fine-grained entanglement pool), thereby creating new order. 
Prigogine’s Premise: Tension resulting from the entropy differential 
between a high-order state and a more entropic state causes dissipative 
structures to self-organize, thereby causing order-creation. 
Lorenz’s Premise: The region of emergent complexity (self-organization 
of autonomous heterogeneous agents) is sandwiched between two critical 
values (the Rayleigh numbers, Rc1 & Rc2) along the Reynolds energy 
gradient (R). 
Kelso, et al.’s premise: Control parameters, Ri , externally influenced, 
create R > Rc with the result that degrees of freedom are enslaved, order 
parameters appear, and a phase transition (instability) appears, resulting 
in similar patterns of complexity emerging even though underlying 
generative mechanisms show high variance. 

Order-Creation & Extinction 
Salthe’s Premise: The material (geological & atmospheric) context of 
the biosphere creates the entropy production potential that gives rise to 
dissipative structures that themselves progress through immaturity, 
mature, and senescent stages of their own entropy production—that in 
turn creates irreversible order-creation conditions for lower scale 
dissipative structures, and so on in downward hierarchical progression. 
(His proposed new law of thermodynamics). 

Extinction 
Kauffman’s Premise: Given that (unspecified) conditions are in place 
that drive bioeconomic phenomena toward the dynamical edge of chaos, 
the power law effects of self-organized criticality come into effect leading 
to extinction events, thereby preventing the overwhelming triumph of 

nonergodicity into the “adjacent possible.” (His “candidate 4th law” of 
thermodynamics.) 

The generative mechanisms (processes) implied by the 
premises separate into two broad categories of causal 
force: bottom-up and top-down. First, the bottom-up rule 
holds that the effects of context are focused onto a few 
order-parameters remaining after the effects of most other 
degrees of freedom are negated. Neither the summing-over 
effect or the contextual effect can independently cause 
coarse-graining. And since both are involved as necessary 
conditions, but neither is sufficient, we have what 
Churchman and Ackoff (1950) long ago termed a co-
producer situation. 

Downward causality divides into three sets. Cohen & 
Stewart, Prigogine, and Lorenz focus on an order-creation 
rule. Salthe includes both creation and extinction rules. 
Kauffman suggests a basic power-law based extinction 
rule. Order-creation is clearly seen as emergent when R, 
the measure of energy or entropy flow, is Rc1 < R < Rc2—
the tension produced by the difference between a highly 
ordered system and a more entropic system lies between 
the 1st and 2nd critical values of R. Salthe and Kauffman 
recognize that no causal model is complete without a 
damping mechanism. As Kauffman notes, since the bio- 
and econospheres are not totally ordered everywhere, 
some force acts to attenuate the unending proliferation of 
dissipative structures. Extinction does this very well. 

                                                 

                                                

One could argue that for more than 4 decades 
Prigogine has been working on what could be viewed as 
the 0th law of thermodynamics.7 This idea has carried 
over into the European complexity science community 
(Prigogine 1955, 1962, Haken 1977, Nicolis and Prigogine 
1989, Stauffer 1987a, b, Cramer 1993, Mainzer 1997), but 
is not evident in much of the work associated with the 
Santa Fe Institute (Pines 1988, Nadel and Stein 1992, 
1995; Cowan, Pines, and Meltzer 1994, Morowitz and 
Singer 1995, Arthur, Durlauf, and Lane 1997, Kohler and 
Gumerman 2000) though it does show up in Kauffman 
1993, 2000)8. The work by Kelso and colleagues (in the 

 

7 Physicists always cringe when social scientists start tampering with 
their terms, as I am now doing with thermodynamics. But since natural 
scientists themselves have spread the use of “thermodynamics” into social 
science—specifically Prigogine, Haken (1996), Mainzer, Salthe, 
Kauffman, among many others—it would appear they have opened the 
door to social scientists. 
8 Goldstein (1993) manages to write a paper about “nonlinear dynamics 
of pattern formation” in which he talks about “dissipative dynamics” and 
the Rayleigh dissipation function” without ever mentioning the work of 
Prigogine or Haken, for example. Even more surprising is the omission of 
Prigogine and Haken’s work in a 148 page chapter by Tagg (1995) about 
instabilities in fluid flows brought on by changes in the Reynolds number 
and in which he even cites Bénard’s original (1901) paper. Most 
egregious is a paper by Bennett (1988) in which he discusses irreversible 
self-organization resulting from dissipation in the context of the 2nd Law 
of Thermodynamics, without citing Prigogine, though he does cite van 
Kampen’s (1962) paper on the statistical mechanics of irreversible 
processes—the subject of Prigogine’s (1962) book. A recent exception is 
a paper by te Boekhorst and Hemelrijk (2000), who happen to be at the 
University of Zurich. 

6 Mainzer (1997, p. 58), as does Haken (1983, p. 254) incorrectly terms R 
the Rayleigh number. R, is really the Reynolds number—a measure of the 
rate of fluid flow. In a Bénard cell R is a direct function of the heat 
differential. In fluid dynamics, at a specific level of R, fluid flow becomes 
turbulent. This “critical value” of R is termed the Rayleigh number, Rc 
(Lagerstrom, 1996). Laminar flow scientists have one critical value, Rc 
that separates laminar from turbulent flows. Lorenz and complexity 
scientists have created two Rcs. The 1st separates the region of emergent 
complexity from laminar flow or conduction and the 2nd separates the 
region of emergent complexity from deterministic chaos—the so-called 
“edge of chaos.” 
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Santa Fe Proceedings volume edited by Mittenthal and 
Baskin 1992) is a notable exception.  

But, if an order-creation law actually exists across the 
physical, biological, and social worlds, I also show that it 
has not been coherently defined or broadly agreed to as yet 
(McKelvey 2001d). As my review indicates, it spreads 
across at least ten initial insights (the premises) about 
when and what kind of force precipitates order-creation by 
heterogeneous agents. There is disagreement about 
whether the force is up-ward or down-ward. There is 
actually more agreement across the bio- and econospheres 
than there is going up and down between the quantum and 
atomic levels of matter. There is not total agreement that 
an energy or tension differential located within the 1st and 
2nd critical values of R is the key requirement—but no one 
explicitly disagrees with this view. This view—externally 
originating tension differentials, with Rc1 > R > Rc2, 
initiating order-creation activities by agents—is, of course, 
Prigogine’s basic thesis. And, it all goes back to Bénard 
(1901). 

My summary premise of Kelso, Bing, and Schöner’s 
(1992) six concluding points (p. 433) on the dynamics of 
order-creation appears to come closest to a possible 0th law 
of thermodynamics: 

Control parameters, Ri , externally influenced, create R > Rc 
with the result that degrees of freedom are enslaved, order 
parameters appear, and a phase transition (instability) 
appears, resulting in similar patterns of complexity 
emerging even though underlying generative mechanisms 
show high variance.  

 

It is cumbersome compared to “energy conservation” 
or “entropy production”—the 1st and 2nd Laws, 
respectively, though “Rc1 > R > Rc2” could be a good 
match. A one-sentence version says: 
Adaptive tension R, positioned between Rc1 and Rc2 , produces 
self-organization. 

Is the Bénard process, as an “order-creation engine 
activating agents,” something that social scientists should 
pay attention to? The 1st Law of Thermodynamics 
essentially says that, given existing structure, energy is 
conserved. The 2nd Law says that over time, order induced 
by higher energy states dissolves into randomness. The 0th 
law is clearly central to complexity science (Nicolis and 
Prigogine 1989, Cramer 1993, Mainzer 1997, Kauffman 
2000)—How does energy (or McKelvey’s adaptive 
tension, 2001b) transform into order? The Bénard process 
energy-differential “cause” appears to apply to weather, 
fluid dynamics, various chemical materials, the geology of 
the Earth, and various biological phenomena. This is at the 
core of much of physical and biological complexity 
science. To what extent can this definition of the 0th “law” 
be applied to broader physical phenomena, to biological 
phenomena, and to social science? 

Durlauf (1997, p. 33) says, “A key import of the rise of 
new classical economics has been to change the primitive 
constituents of aggregate economic models: while 
Keynesian models employed aggregate structural 
relationships as primitives, in new classical models 

individual agents are the primitives so that all aggregate 
relationships are emergent.” In Durlauf’s view agent 
behavior has become the basis of new classical economics. 
Similarly for economists and other social scientists who 
are using agent-based models—such as Axlerod and 
Bennett 1993), Arthur (1995), Arthur et al. (1997), 
Kollman, Miller, and Page (1997), Read (1998), Macy 
(1999), Tesfatsion (1999), White (1999), Bonacich (2000), 
Zak and Park (2000), Cederman (2001), LeBaron 
(forthcoming), and the many others who are now studying 
intrafirm social behavior, reported in anthologies such as 
Masuch and Warglien (1992), Carley and Prietula (1994), 
and Prietula, Carley, and Gasser (1998), Ilgen and Hulin 
(2000). These scholars explicitly model the actions of 
agents and so their models might reasonably be expected 
to explore engines such as the Bénard process that could 
position economic complexity in the “emergent 
complexity” region between Cramer’s “Newtonian” and 
“chaotic” regions. They are also very clearly not assuming 
underlying equilibrium dynamics. They are in the best 
position to put the 0th law idea to test. These and other 
agent modelers have produced quite a number of findings 
by now that demonstrate that agent-based research aids the 
explanation of economic systems—as well as narrower 
(stock) market, intrafirm, firm, and industry behaviors. 

5 PARALLELS BETWEEN 
CONNECTIONIST MODELING AND 
POSTMODERNISM 

Postmodernism appears very much against positivism 
and normal science in general (Holton 1993, Norris 1997, 
Gross, Levitt and Lewis 1996, Gross and Levitt 1998, 
Koertge 1998, Sokal and Bricmont 1998) and surely has a 
“lunatic fringe” I find abhorrent. But, as I will demonstrate 
here, it has at its core a process of sociolinguistic order-
creation that is isomorphic to processes in agent-based 
modeling, and therefore the more considered and 
responsible core of postmodernism, when connected with 
agent-based modeling, provides an additional platform of 
institutional legitimacy for social science. In short, its 
ontology is on target but its trashing of normal science 
epistemology is based on archaic rhetoric. 

Sarup (1993) attributes the origin of the term, 
postmodernism to the artists and art critics of New York in 
the 1960s. From there it was taken up by French theorists 
such as Baudrillard, Derrida, Foucault, Lyotard and 
Saussure. Subsequently the theme was picked up by those 
in the “Science, Technology, and Society 
Studies…feminists and Marxists of every strip, 
ethnomethodologists, deconstructionists, sociologists of 
knowledge, and critical theorists” Koertge (1998, p. 3). 
From Koertge’s perspective, some key elements of 
postmodernism are (pp. 3–4): 
• “…Content and results [of science]…shaped by…local historical 
and cultural context;” 
• “…Products of scientific inquiry, the so-called laws of nature, must 
always be viewed as social constructions. Their validity depends on the 
consensus of ‘experts’ in just the same way as the legitimacy of a pope 
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depends on a council of cardinals;” 
• “…Scientific knowledge is just ‘one story among many’.” 
• “…The best way to appraise scientific claims is through a process of 
political evaluation…. The key question about a scientific result should 
not be how well tested the claim is but, rather, Cui bono?” 
• “…The results of scientific inquiry are profoundly and importantly 
shaped by the ideological agendas of powerful elites.” 

 

• “…Euroscience is not objectively superior to the various 
ethnosciences and shamanisms described by anthropologists or invented 
by Afrocentrists.” 
• “…Science is characterized chiefly by its complicity in all the most 
negative and oppressive aspects of modern history: increasingly 
destructive warfare, environmental disasters, racism, sexism, eugenics, 
exploitation, alienation, and imperialism.” 

A comprehensive view of postmodernism is elusive 
because its literature is massive and exceedingly diverse 
(Sarup 1993, Alvesson and Deetz 1996, Cilliers 1998). But 
if a “grand narrative” were framed it would be self-
refuting since postpositivism emphasizes localized 
language games searching for instabilities (Lyotard 1984). 
Further, it interweaves effects of politics, technology, 
language, culture, capitalism, science, and 
positivist/relativist epistemology as society has moved 
from the Industrial Revolution through the 20th century 
(Sarup 1993). Even so, Alvesson and Deetz boil 
postmodernism down to the following points (1996, p. 
205): 
• Reality, or “‘natural’ objects,” can never have meaning that is less 
transient than the meaning of texts that are locally and “discursively 
produced,” often from the perspective of creating instability and novelty 
rather than permanency. 
• “Fragmented identities” dominate, resulting in subjective and 
localized production of text. Meanings created by autonomous individuals 
dominate over objective “essential” truths proposed by collectives (of 
people). 
• The “indecidabilities of language take precedence over language as 
a mirror of reality.” 
• “Multiple voices and local politics” are favored over meanings 
imposed by elite collectives in the form of “grand narratives…theoretical 
frameworks and large-scale political projects.” 
• The impossibility of separating political power from processes of 
knowledge production undermines the presumed objectivity and truth of 
knowledge so produced—it loses its “sense of innocence and neutrality.” 
• The “real world” increasingly appears as “simulacra”—models, 
simulations, computer images, and so forth—that “take precedence in 
contemporary social order.” 
• Research aims at “resistance and indeterminacy where irony and 
play are preferred” as opposed to “rationality, predictability and order.” 

The key insight underlying my claim that 
postmodernism does in fact offer institutional legitimacy 
to social science when the latter is viewed as mostly 
aiming at order-creation and heterogeneous agent behavior 
comes from a wonderful book by Paul Cilliers (1998)—
Complexity and Postmodernism. Paul spent ten years of 
his life as a neural network computational modeler, after 
which he became a Lecturer in Philosophy in South 
Africa. He draws principally from Saussure, Derrida, and 
Lyotard. He interprets postmodernism from the 
perspective of a neural net modeler, emphasizing 
connections among agents rather than attributes of the 
agents themselves. This perspective comes from modern 

conceptions of how brains and (distributed) intelligence 
function. In the connectionist perspective—and as in 
neural net models—brain functioning is not in the neurons, 
nor “in the network” but rather “is the network” (Fuster 
1995, p. 11). Distributed intelligence also characterizes 
firms, and many other social systems (McKelvey 2000a). 

Cilliers (p. 6) first sets out ten attributes of complex 
adaptive systems (shown in italics) and later connects 
these attributes to key elements of postmodern society (pp. 
119–123)—to which I add additional postmodernist 
themes: 
1. “Complex systems consist of a large number of elements.” 
Postmodernists’ focus on individuality, fragmented identities, and 
localized discourse. 
2. “The elements in a complex system interact dynamically.” 
Postmodernists emphasize that no agent is isolated; their subjectivity is an 
intertwined “weave” of texture in which they are de-centered in favor of 
constant influxes of meaning from their network of connections. 
3. “The level of interaction is fairly rich.” Postmodernists view agents 
as subject to a constant flow and alteration of meanings applied to texts 
they are using at any given time. This in increasing in modern society. 
Texts imposed on any given agent are, needless to say, richly diverse in 
variety, content, and interpreted meanings. 
4. “Interactions are nonlinear.” Postmodernists hold that interactions 
of multiple voices and local interactions lead to change in meanings of 
texts, that is, emergent meanings. Given that texts and their variety and 
meaning do not flow evenly, that social interaction is not predictably 
systematic, that power and influence are not evenly distributed, and that 
none of the foregoing are stable over time, it follows that textual meaning 
flows and interpretations, and consequent emergent new meanings and 
concomitant social interactions are nonlinear and potentially could show 
large change outcomes from small beginnings. 
5. “The interactions are fairly short range.” Postmodernists emphasize 
“local determination” (Lyotard 1984) and the “multiplicity of local 
“discourses’” (Cilliers p. 121). Though long range interactions and 
influences on textual meaning are not precluded, most agents are seen to 
respond to locally available information. Locally determined, socially 
constructed group level meanings, however, inevitably seep out to 
influence other groups and the agents within them. 
6. “There are loops in the interconnections.” Postmodernists translate 
this into reflexivity. Local agent interactions may form group level 
coherence and common meanings. These then, reflexively, supervene 
back down to influence the lower-level agents Lawson 1985). This fuels 
their view that meanings—interpretations of terms—are constantly in 
flux—“they are contingent and provisional, pertaining to a certain context 
and a certain time-frame.” Local level interpretations are subject to the 
potentially greater influence of power-elites emerging to control the 
higher-level collectivities and their interpretation of meanings. 
7. “Complex systems are open systems.” If there is any implicit 
pervasive subtext in postmodernism it is that agents, groups of agents, 
and groups of groups, etc., are all subject to outside influences on their 
interpretations of meanings. Postmodernists see modern societies—the 
modern condition—as increasingly subject to globalization and 
complication of influence networks. Cooper and Burrell (1988) note that 
“knowledge and discourse have to be ‘constructed’ from a ‘chameleonic’ 
world” (quote in Hassard and Parker 1993, p. 10). 
8. “Complex systems operate under conditions far from equilibrium.” 
McKelvey (2001b) translates Prigogine’s concept of “far from 
equilibrium” into adaptive tension. In postmodern society the mass media 
provide local agents, and groups of virtually any size, constant 
information about countless disparities in values, culture, economics—the 
human condition in general. These disparities set up adaptive tensions 
generating energy and information flows (what Salthe, 1993, refers to as 
“infodynamics”) that create conditions: (1) for social self-organization 
and increasing complexity (McKelvey 2001a); (2) novelty, and economic 
change away from equilibrium (McKelvey 2001d, e)—Schumpeter’s 
creative destruction; that (3) lead to rapid technological 
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change, scientific advancement and new knowledge, which in turn reflex 
back to create more disparity and nonlinearity. 
9. “Complex systems have histories.” By viewing agents as not self-
directing, Derrida “de-centers” agents by locating them in a system of 
interconnections among strata (Hassard and Parker 1993, p. 15). 
Postmodernists see history as individually and locally interpreted. 
Therefore, though systems have histories—the economists’ path 
dependencies—histories do not appear as grand narratives uniformly 
interpreted across agents. 

 

10. “Individual elements are ignorant of the behavior of the whole 
system in which they are embedded.” This shows up most clearly in 
postmodernists’ view that “attempts to discover the genuine order of 
things are both naïve and mistaken” (Hassard and Parker 1993, p. 12). 
Agents are not equally well connected with all other parts of a larger 
system. In addition, agents have fragmented identities and localized 
production of textual meanings. Any agent’s view of a larger system is at 
least in part colored by the localized interpretations of other 
interconnected agents. Even if information about the whole system is 
available it is always subject to localized interpretations. These are 
compounded by reflexivity effects. 

Hassard and Parker’s postmodernist framework (1993, 
pp. 11–15) highlights five elements foreshadowing 
Cilliers’ merging of connectionist modeling and 
postmodernism. Representation: “Language which is 
produced by the empirical process does not equate with an 
increasingly accurate correspondence with reality. Instead, 
it represents a process of professional self-justification” (p. 
12)—a local agent or group level supervening effect. 
Reflexivity: Grand narratives and broad scientific “truths” 
cannot be disentangled from local agent interpretations. 
Nor are agent interpretations independent of 
interpretations espoused by higher level social 
constructions. Writing is seen as “an autonomous self-
propelling force that lies beyond the intentions of the 
individual actor.” (Cooper 1989, p. 486). ‘Difference’: A 
knowledge “concept is never present in and of 
itself…every concept is inscribed in a chain or in a system 
within which it refers to” other concepts (Derrida 1982, p. 
11; quoted in Hassard and Parker, p. 14). De-centering: 
Agents are seen as no longer self-directing but instead 
embedded in a system of interrelations among different 
sociostructural levels (Derrida 1978)—agents are a 
convenient location for the throughput of discourses 
(Hassard and Parker, p. 15). The latter notion is not unlike 
the view that biological phenotypes are simply temporary 
repositories for the genetic code of a species (McKelvey 
1982) or Fuster’s view that intelligence “is the network.” 

As noted previously, Postmodernism is notorious for 
its anti-science views. Many of these anti-science 
interpretations may be written off as localized 
interpretations totally off the mark. In the evolutionary 
epistemological terms of Campbellian Realism, they will 
be quickly winnowed out of epistemological discourse. It 
is also true that much of postmodernist rhetoric is based on 
the positivists’ reconstructions of epistemology based on 
classical physicists’ linear deterministic equilibrium 
analyses of phenomena governed by the 1st Law. As such, 
its rhetoric is archaic—it is based on a reconstruction of 
science practice (logic-in-use in Kaplan’s, 1964, terms) 
that never existed, and in any event, has since been 
discredited (Suppe 1977). The core of postmodernism I 

have described here does, however, support a strong 
interconnection between “new” normal science—as 
reflected in complexity science—and postmodernism: 
Both rest on parallel views of socially connected, 
autonomous, heterogeneous, human agents. The ten points 
above, drawn from Cilliers’ analysis, give evidence of this. 

6 CONCLUSION: AGENT-BASED 
MODELS AS “PHILOSOPHICALLY 
CORRECT” 

The title of this paper, “Foundations of “new” Social 
Science,” sounds pretentious. But consider: 
1. Model-Centered Science. Toward the end of the 20th 
century, philosophers moved away from positivism to 
adopt a more probabilistic view of truth statements, the 
scientific realist view that transcendental causal processes 
can be uncovered and explained without running afoul of 
metaphysical term issue that so worried the positivists. 
Campbell’s contribution is to recognize that real-world 
phenomena may act as external criterion variables against 
which theories may be tested without social scientists 
having to reject individual interpretationist tendencies and 
social construction. Regarding the Semantic Conception it 
is worth repeating that Suppe (1989, p. 3) says, “[It] today 
probably is the philosophical analysis of the nature of 
theories most widely held among philosophers of science.” 
As outlined in this paper, models are the central feature of 
the Semantic Conception as is the bifurcation of scientific 
activity into tests of the theory–model relationship and the 
model–phenomena link. In this view, theory papers should 
end with a (preferably) formalized model and empirical 
papers should start by aiming to test the ontological 
adequacy of one. Most social science papers are not so 
oriented. 
2. Math Molding Effects. The message from the Morgan 
and Morrison (2000) chapters speaks to the autonomous 
influence of models on science—in addition to theory and 
data. Math models are surely are the dominant autonomous 
modeling influences in modern science. Read (1990) 
points to the fundamental molding effect of math models 
on social science and also points to their fundamental 
limitation, saying, “…A major challenge facing 
effective—mathematical—modeling…is to develop 
models that can take into account…[agents’] capacity for 
self-modification according to internally constructed and 
defined goals.” (p. 13) Basically, the assumptions required 
for tractable mathematics steer models away from the most 
important aspects of human behavior. To the extent that 
there are formal models in social science they tend to be 
math models—a clear implication to be drawn from 
Henrickson’s (2002) citation survey. Few social scientists 
use models immune to the molding effects of the math 
model. 
3. Order-Creation Science. Complexity science is a 
recent development in natural science now spreading into 
social science (Cowan, Pines and Meltzer 1994, Merry 
1995, Mainzer 1997, Byrne 1998, Axlerod and Cohen 
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2000). But the primary message from Mainzer’s book is 
that complexity science is really focusing on the processes 
of order-creation by heterogeneous coevolving 
autonomous agents—he traces the story from quantum 
physics, to biology, to neural behavior, to AI, and finally 
to social systems. McKelvey (2001d) develops this theme 
further in a search for a basic theory or order-creation 
ranging from physics to economics (see also Salthe 1993, 
Kauffman 1993, 2000; McKelvey 2001e). As McKelvey 
observes, formal modeling in social science—and 
principally in economics—uses math born primarily in the 
context of classical physicists’ study of orbital mechanics 
and Newton’s 1st Law (energy conservation). Of most 
interest in social science is order-creation before the 
equilibrium constraints of the 1st Law—and there are very 
few formal models of “pre 1st Law” dynamics. Because 
math calls for equilibrium assumptions, and is essentially 
deterministic, most formal models in social science, by 
definition, cannot study order-creation. The use of formal 
math models, thus, precludes the study of how 
heterogeneous, autonomous agents create order. Needless 
to say, once the formal modeling of order-creation in 
social science is well established, the empirical 
corroboration of instances where societies become locked 
in equilibrium and somehow do not create new order 
becomes much more interesting—modern hunting-and-
gathering societies being a case in point. Very few social 
scientists have followed the complexity scientists 
redefinition of normal science to focus more directly on 
order-creation by heterogeneous autonomous agents, 
using agent-based computational models. 

 

4. Postmodernism’s Connectionist Core. While 
postmodernism is anathema to normal scientists (Gross, 
Levitt and Lewis 1996, Norris 1997, Gross and Levitt 
1998, Koertge 1998, Sokal and Bricmont 1998) we do 
need to give relativists and postmodernists credit for 
reminding us that “We ARE the Brownian Motion!” Most 
natural scientists are separated from their “agents” by vast 
differences in size and/or distance and barriers. Social 
scientists are agents doing their science right at the agent 
level. Most sciences do not have this luxury. But it also 
means a fundamental difference. We are face to face with 
stochastic heterogeneous agents and their interconnections. 
Social scientists should be first in line to want a scientific 
modeling epistemology designed for studying order-
creation by agents. Instead, we draw our formal modeling 
technology from sciences vastly separated from their 
agents, and by tradition and instrumental convenience, 
comfortable with their homogeneity and equilibrium 
assumptions. This simply does not make sense, except 
when viewed in the light of weak sciences trying to bolster 
their institutional legitimacy by copying established 
sciences. Unfortunately, many postmodernists base their 
anti-science rhetoric on an abandoned epistemology and 
ignore a “new” normal science ontological view very 
much parallel to its own. As Cilliers (1998) argues, at its 
core, postmodernism zeros in on the web of 
interconnections among agents that give rise to localized 

scientific textual meanings. In fact, its ontology parallels 
that of complexity scientists. The third lesson from 
complexity science is that natural scientists have begun 
finding ways to practice normal science without assuming 
away the order-creation activities of heterogeneous 
autonomous agents. There is no reason, now, why social 
scientists cannot combine “new” normal science 
epistemology with postmodernist ontology. Yet very few 
have done so. 
5. Legitimacy. Given the connectionist parallels between 
complexity science and postmodernist views of human 
agents, we may conclude that their ontological views are 
essentially isomorphic. Complexity science ontology has 
emerged from the foundational classic and quantum 
physics and biology, as briefly described in Section 3. And 
surely there can be no doubt that postmodernist ontology 
has emerged from an analysis of the human condition and 
human agents. It follows that an epistemology based on 
complexity science and its agent-based modeling 
approaches may reasonably be applied to social science 
ontology as reflected in the agent-based ontology of 
postmodernism. “New” Social Science Epistemology, 
rather than having to build institutional legitimacy by 
mirroring classic physics, its lower-bound homogeneity 
assumption and its equilibrium-centered math model, can 
instead draw legitimacy from other sources: 
1. Campbellian realism, coupled with the model-centered science of 
the Semantic Conception, bases scientific legitimacy on theories aimed at 
explaining transcendental causal mechanisms or processes, the insertion 
of models as an essential element of sound epistemology, and the use of 
real-world phenomena as the criterion variable leading to a winnowing 
out of less plausible social constructions and individual interpretations; 
2. The more responsible core of postmodernism, as described here, sets 
forth an ontology that emphasizes meaning- and order-creation based on 
the changing interconnections among autonomous, heterogeneous social 
agents—this connectionist-based, social agent-based ontology from 
postmodernism offers social science second basis of improved legitimacy; 
3. The “new” normal science emerging from complexity science, 
centered around emergent order-creation and complexity from the 
interactions of autonomous heterogeneous agents, has developed an 
agent- and model-centered epistemology that couples with the ontological 
legitimacy emerging from postmodernism. This offers a third basis of 
improved legitimacy; 
4. Model-centered science is a two edged sword. On the one hand, 
formalized models are reaffirmed as a critical element in the already 
legitimate sciences and receive added legitimacy from the Semantic 
Conception in philosophy of science. On the other, the more we learn 
about models as autonomous agents—that offer a third influence on the 
course of science, in addition to theory and data—the more we see the 
problematic molding effects math models have on social science. In short, 
math models are mostly inconsistent with the new agent- and model-
centered epistemology. The more the math model’s molding effects are 
realized, and the more that it is also realized that they require assuming 
away both the core postmodernist ontology and “new” normal science 
ontology, the more the legitimacy an alternative formal modeling 
approach—such as agent-based modeling—is increased. This offers a 
fourth basis of improved legitimacy. 
5. In a classic paper, Cronbach (1957) divided research into two 
essential technologies: experiments and correlations. Since then we have 
added math modeling. Hulin and Ilgen (2000) title their book, 
Computational Modeling of Behavior in Organizations: The Third 
Scientific Discipline, to highlight their idea that computational modeling 
gives social scientists a third essential technology in addition to 
Cronbach’s two. As Henrickson’s (2002) journal survey shows, nonlinear 

 



Foundations    18

Axelrod, R. and D. S. Bennett (1993). “A Landscape Theory of 
Aggregation,” British Journal of Political Science, 23, 211–233. 

computational models are rapidly on the increase in the natural sciences. 
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Figure 2 Conceptions of the Axiom-Theory–model–phenomena Relationship 
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Figure 3 Guttman Scale of Effective Science 
 
 

1. Instrumental Reliability     Highest Scientific Standard 
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Figure 4 Boumans’s (2000) Depiction of “Ingredients” in Model Building 
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Figure 5     Rate of Change Away from Precondition Parameters 
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Table 1.  Key Elements from Azevedo’s Mapping Model of Knowledge (1997) 
 
1- Realism holds “that there is a real world existing independently of our attempts to know it.” 
2- “The realist adopts a fallibilist approach to science” and truth. 
3- The rise of postmodernism is based on the “inadequacies of positivism.” 
4- “Postmodernists show a profound ignorance of contemporary realism and a reluctance to engage in serious debate.” 
5- “[H]umans are products of biological evolution…[that] have evolved perceptual and cognitive mechanisms…. Natural selection would not have 

left us with grossly misleading perceptual and cognitive mechanisms.” 
6- “Valid beliefs, therefore, are achieved as a result of social processes rather than despite them.” 
7- Being “scientific is tied up with the nature of the structure and the norms of the institution of science…that distinguish science from other belief 

production and maintenance institutions” such as religion. 
8- The “validity of theories is both relative to the interests that guide theory creation and a function of the reality that they represent.” 
9- [T]heories, like maps, are valid insofar as they are reliable guides to action and decision making.” 
10- “Causal analysis is the basis of validity.” 
11- “Explanations in terms of composition, structure, and function are as much a part of science as are causal explanations. 
12- “[M]entalist explanations [based on meanings, motives, and reasons] turn out to be interpretative functional analyses.…[and] have a loose, but 

nonetheless specified, relationship with the [causal] transition theories they explain.…leaving the way open for a naturalist [realist] approach to 
the social sciences.” 

13- “[K]nowing a complex reality actually demands the use of multiple perspectives.” 

14- “The reality of some entity, property, or process is held to be established when it appears invariant across at least two…independent theories.” 
(pp. 255–269) 

 
 
 
 
 
Table 2.  What Math is Good For 
 
1. Finding numbers;  
2. Accounting for energy translations governed by the 1st law;  
3. Testing theoretical logic by showing deduced consequences following from a theory’s structural properties (initial state parameters);  
4. More compact expressions of complicated interrelations;  
5. Projecting results into the future or past (across time);  
6. Tracing new reasoning back to foundational axioms;  
7. Testing and exploring linear and especially nonlinear relations among theory elements/parameters/variables; and  
8. Theory- and data-based model building—substituting math for mechanical or other iconic models. 
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Table 3.  Mathematical Assumptions Mentioned by Read (1990) 
 
Applications of mathematics assume: 
1. That universal processes exist (p. 38); 
2. That linear relationships prevail (p. 39); 
3. The structural stability of a model’s form (p. 40);  
4. Constancy of parameter values over time (p. 45); 
5. There is some set of state variables that fully describe system at t1 (p. 46); 
6. Analysis consists of determining stability and equilibrium properties (p. 47); 
7. That there is an equilibrium solution (p. 48); 
8. That social systems respond to external forces as physical objects respond to forces of motion;  

That social rules are deterministic as opposed to being the result of evolved agent behavior; 
That state parameters are not subject to modification by agents (p. 49); 

9. That external constraints are stable over time; 
That social systems inevitably drive toward stable equilibrium (p. 51); 

10. In Linear Programming: 
  That maximization of utility functions characterizes human behavior (p. 51); 
  That people minimize cost functions (p. 51);  
  That individual decision making leads to optimal solutions (p. 51); 
  That the effects of individual dynamics on global dynamics can be ignored (p. 51); 
  That systems that survive are the optimal ones (p. 51); 
  That functions are continuous fixed marginal costs (p. 51); 
  That solutions based on averaging are valid (p. 52); 
  When using changing marginal costs, that subjects track the differences (p. 53); 
  That two basic assumptions hold: a) substitutability of resources and b) constancy of parameters (p.54).  

 
 
 
 
 
Table 4.  Key Elements of Economies as Complex Adaptive Systems* 
 
1. Dispersed Interaction—dispersed, possibly heterogeneous, agents active in parallel; 
2. No Global Controller or Cause—coevolution of agent interactions; 
3. Many Levels of Organization—agents at lower levels create contexts at higher levels; 
4. Continual Adaptation—agents revise their adaptive behavior continually; 
5. Perpetual Novelty—by changing in ways that allow them to depend on new resources, agents coevolve with resource changes to 

occupy new habitats; 
6. Out-of-Equilibrium Dynamics—economies operate “far from equilibrium,” meaning that economies are induced by the pressure 

of trade imbalances, individual to individual, firm to firm, country to country, etc. 
*Arthur, Durlauf, and Lane (1997) 
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