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Abstract
Practicing managers live in a world of ‘extremes’, but international business
and management research is based on Gaussian statistics that rule out such
extremes. On occasion, positive feedback processes among interactive data
points cause extreme events characterized by power laws. They seem
ubiquitous; we list 80 kinds of them – half each among natural and social
phenomena. We use imposed tension and Per Bak’s ‘self-organized criticality’
to argue that Pareto-based science and statistics (based on interdependence,
positive feedback, scalability, (nearly) infinite variance, and emphasizing ex-
tremes) should parallel the traditional dominance of Gaussian statistics (based
on independent data points, finite variance and emphasizing averages). We
question quantitative journal publications depending on Gaussian statistics.
The cost is inaccurate science and irrelevance to practitioners. In conclusion, no
statistical findings should be accepted into business studies if they gain
significance via some assumption device by which extreme events and (nearly)
infinite variance are ignored. Accordingly, we suggest redirecting international
business studies, and management research in general.
Journal of International Business Studies (2007) 38, 1212–1230.
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Introduction

The most diverse attempts continue to be made to discredit in advance all
evidence based on the use of doubly logarithmic graphs. But we think this
method would have remained uncontroversial, were it not for the nature of the
conclusion to which it leads. Unfortunately, a straight, doubly logarithmic
graph indicates a distribution that flies in the face of the Gaussian dogma,
which long ruled uncontested. The failure of applied statisticians and social
scientists to heed Zipf helps account for the striking backwardness of their fields
(Mandelbrot, 1983: 404).

Most quantitative business studies researchers presume Gaussian
(normal) distributions with finite means and variances and use
appropriate statistics to match: for evidence, study any random
sample of current research papers of your choosing. It follows that
virtually all of our quantitative research-based lessons to managers
stem from Gaussian-based research. On the other hand, best-selling
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books such as In Search of Excellence, Salim Group,
Control Your Destinyy, The Challenger Disaster,
Hidden Value, Good to Great, What Went Wrong at
Enron, Strategy is Destiny: ‘Tangento’ en Parmalat?
and Boeing vs Airbus,1 are case studies of rare and/or
extreme events – organizations that are extremely
good or associated with disasters. The cases we use
in our classrooms are almost always cases about
very good or bad firms; they are seldom, if ever,
about ‘average’ firms.
Could it be that findings from journal articles

legitimated by statistical significance based on
Gaussian assumptions and statistics are mistaken,
and the derived advice to managers is at odds with
reality? We believe the time has come to work
toward a different, but equally legitimate, research
and teaching approach. We draw our solution from
complexity science (West and Deering, 1995) and
econophysics (Mantegna and Stanley, 2000; New-
man, 2005); our solution builds from full accep-
tance of Pareto distributions and then scalability,
fractal structures, power laws, and scale-free theory.
The coast of Norway appears jagged, no matter

what kind of measure is used: miles, kilometers,
meters, or centimeters. This is called ‘scalability’: no
matter what the scale of measurement, the phe-
nomena appear about the same. Scalability results
from what Mandelbrot (1983) calls fractal geometry.2

A cauliflower is an obvious example. Cut off a flo-
ret; cut a smaller floret from the first floret; then an
even smaller one; and then one another yet, and so
on. Each fractal subcomponent is smaller than the
former; but each has the same shape, structure,
function, cause, and causal explanation. If the
florets are plotted by size and frequency they are
Pareto distributed.
If plotted on double-log paper, Pareto distribu-

tions show the distinctive power law signature – a
negatively sloping straight line. Power laws seem
ubiquitous – they pertain to leaves, coastlines, and
music (Casti, 1994). They apply to earthquakes,
web hits, phone calls, wealth, and word frequency;
cities; and firms (see Table 1). Power law phenom-
ena call for scale-free theories because the same cause
and explanation apply to each of the different
levels.3 They exhibit the power law signature because
they shrink by a fixed ratio.
Does it matter? Pareto distributions have long

(‘fat’) tails, nearly infinite variance, and consequen-
tly unstable means and confidence intervals. By
contrast, Gaussian distributions have vanishing
tails, thereby allowing focus to dwell solely on limited
variance and stable means. As a result, confidence

intervals for statistical significance are clearly
defined, stable, and narrowed, with the result that
attaining statistical significance, publication, and
then career advancement, is easier. Power laws
indicate ‘correlated, cooperative phenomena bet-
ween groups of interacting agents’4 (Cook et al.,
2004). They often take the form of rank/size ex-
pressions such as FEN"b, where F is frequency, N is
rank (the variable), and b, the exponent, is
constant. In exponential functions the exponent
is the variable and N is constant.
Gauss vs Pareto is not a simple either-or divide.

Rather, it can depend on circumstances that in-
crease the likelihood of interdependent interac-
tions. We argue that two general conditions are most
apt to cause the shift from independent-additive
to interaction with possibility of positive feedback –
that is, power law conditions: (1) increased ten-
sions of various kinds, and/or (2) lower cost and
greater ease of making connections. We base our
logic on Bak’s (1996) concept of self-organized
criticality (SOC). We also hold that because of SOC
effects most, if not all, of the interdependence-based
power law theories apply to management research
and international business studies. Power law effects
are thus widespread in organizations, and have far
greater consequence than current users of statistics
presume.
We suggest that the international business (IB)

arena is especially vulnerable to SOC effects.
Globalization imposes cultural-diversity-based ten-
sions on managers and organizations. Other criti-
cality tensions on Europe and the US stem from
the low-cost producer status of India and China.
Technology-sourced tensions affect IB even more
than they do Europe and the US simply because
they are newly imposed. The recent enlargement of
the EU is another source of imposed tension on
firms. All this in the context of new email, Internet,
and mobile phone technologies making global
connections easier and cheaper. Tension is also
increasing in the IB world owing to environmental
changes that require new international institu-
tional and ethical approaches: water scarcity and
related cross-border disputes, cross-border immi-
grant labor, pollution spreading from country to
country, and climate change are generating new
forms of interdependency among MNEs and with
institutions, societies and social groups. Corporate
social responsibility is about these new interdepen-
dencies. Increased connectivity in IB calls for
network approaches that sit at the heart of Paretian
statistics.
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Table 1 Some examples of natural and social power law phenomena

Natural science References Social science References

Physics General social

Brownian motion

Fractures of materials

Sandpile avalanches

Laser technology evolution

Brush-fire damage

Amount of yearly precipitation

Water levels in the Nile

Hurricanes and floods

Number of minerals per country

Earthquakes

Power system blackouts

Coastlines

Magma rising through earth’s crust

Size of asteroid hits

Sun spots

Galactic structure

Biology

Frequency of DNA base chemicals

Genomic properties (DNA words)

Genetic circuitry

Protein–protein interaction networks

Metabolism of cells

Cellular substructures

Magnitude estimation of sensorial stimuli

Circulation in plants and animals

Phytoplankton

Willis’s law: number versus size of plant genera

Brain functioning

Tumor growth

Bronchial structure

Fetal lamb breathing

Heart beat rates

Death from heart attack

Predicting premature births

Functional networks in brain

Punctuated equilibrium

Body size of species

Epidemics

Frequency of species

Size distributions in ecosystems; predators

Mass extinctions

West and Deering (1995); Gardner (1978)

Sornette (2002)

Bak (1996)

Baum and Silverman (2001)

Bak (1996)

Nekola and Brown (2007)

Casti (1994)

Bak (1996)

MINDAT

Gutenberg and Richter (1944)

Carreras et al. (2004)

Casti (1994)

Weinberg and Podladchikov (1994)

Hughes and Nathan (1994);

Marsili and Zhang (1996)

Hughes et al. (2003)

Baryshev and Teerikorpi (2002)

Selvam (2002)

Luscombe et al. (2002)

Barabási (2002)

Song et al. (2005); Wuchty and

Almaas (2005)

West et al. (1997)

Wax et al. (2002)

Roberts (1979)

West et al. (1997)

Jenkinson (2004)

Willis (1922)

Stassinopoulos and Bak (1995)

Brú et al. (2003)

Goldberger et al. (1990)

Szeto et al. (1992)

Nahshoni et al. (1998)

Bigger et al. (1996)

Sornette (2002)

Shin and Kim (2004)

Bak and Sneppen (1993)

Haskell et al. (2002)

Liljeros et al. (2001)

Willis and Yule (1922)

Camacho and Solé (1999)

Bak (1996)

Music

Language word usage; Deaths of languages

Structure of WWW

Structure of Internet hardware

Number of hits received from website per day

News website visitation decay patterns

Number of telephone calls and emails

Social networks

Sexual networks

Actor networks

Co-authorships

Publications and citations

Delinquency rates

Aggressive behavior among boys

during recess

Global terrorism events

Distribution of family names

Size of villages

Traffic jams

Number of inventions in cities

Cities

Casualties in war

Firms

Cotton prices

Consumer product sales; long tails

Copies of books sold

Blockbuster drugs sold; movie profits

Distribution of Wealth

Price movements on exchanges

Economic fluctuations

Growth rate of countries’ GDP

Entrepreneurship/innovation

Intra-firm decision events

Job vacancies

Income

Growth rates and internal structure of firms

Firm size

Supply chains; bankruptcies

Director interlock structure

Alliance networks among biotech firms

Italian industrial districts

Transition economies

Casti (1994)

Zipf (1949); Abrams and Strogatz (2000)

Albert et al. (1999)

Faloutsos et al. (1999)

Adamic and Huberman (2000)

Dezsö et al. (2006)

Aiello et al. (2000); Ebel et al. (2002)

Watts (2003)

Liljeros et al. (2001)

Barabási and Bonabeau (2003)

Newman (2001)

Lotka (1926); de Solla Price (1965)

Cook et al. (2004)

Warren et al. (2005)

Dumé (2005)

Zanette and Manrubia (2001)

Carneiro (1987)

Nagel and Paczuski (1995)

Bettencourt et al. (2005)

Estoup (1916); Zipf (1949)

Cederman (2003)

Mandelbrot (1983)

Moss (2002); Anderson (2006)

Hackett (1967)

Buchanan (2004); De Vany (2004)

Pareto (1897); Levy and Solomon (1997); Hegyi et al. (2007)

Mandelbrot and Hudson (2004)

Scheinkman and Woodford (1994)

Lee et al. (1998)

Poole et al. (2000)

Diatlov (2005)

Gunz et al. (2001)

Clementi and Gallegati (2005)

Stanley et al. (1996)

Axtell (2001)

Scheinkman and Woodford (1994); Delli Gatti et al. (2004)

Battiston and Catanzaro (2003)

Barabási and Bonabeau (2003): 207, building on Powell et al. (2005)

Andriani (2003a)

Podobnik et al. (2006)
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To the extent that interdependence applies, re-
searchers ignoring power law effects risk drawing
false conclusions in their articles and promulgating
inaccurate advice to managers. This because man-
agers increasingly work in surroundings prone to
Paretian extremes, not Gaussian averages. Given this,
we raise the question:How can we redirect management
research toward the study of extremes in ways that still
fall within the bounds of an effective science – one that
still offers credible bases for asserting truth claims?
We begin with an introduction to power law

phenomena. We discuss some social and organiza-
tional power laws in more detail. We then focus on
SOC and tension effects in IB. Following this, we
question the basic assumptions of statistics-based
methods and the robustness techniques used to
dismiss interdependence effects. We then draw
implications for management research. Our con-
clusion crystallizes the several arguments aimed at
redirecting quantitative research methods applied
to IB research and management practice.

Power law phenomena
In recounting the Santa Fe Institute’s Vision, Brock
(2000: 29) says:

The study of complexity y is the study of how a very
complicated set of equations can generate some very simple
patterns for certain parameter values. Complexity considers
whether these patterns have a property of universality about
them. Here we will call these patterns scaling laws.

He observes that the study of complexity ‘tries to
understand the forces that underlie the patterns or
scaling laws that develop’ as newly ordered systems
emerge (Brock, 2000: 30).
There are two kinds of scalability: (1) the coast of

Norway looks pretty much the same nomatter which
measure is used, meters or miles; (2) a causal dynamic
is scalable because it operates in the same way at
multiple levels. The first is result scalability; the
second is cause scalability. A fractal structure exhi-
bits both aspects. The underlying cause is the same
from the whole down to the smallest part; the ‘look’
of it is pretty much the same at all levels as well.
Power law phenomena exhibit Paretian rather

than Gaussian distributions: see Figure 1. The
difference lies in assumptions about interconnec-
tivity. In a Gaussian distribution the data points are
assumed to be independent-additive (hereinafter
simply ‘i.i.d.’ – independent, indentically distri-
buted). Independent events generate normal dis-
tributions, which sit at the heart of modern
statistics. When causal elements are independent-
multiplicative they produce a log-normal distribu-

tion, which turns into a Pareto distribution as the
causal complexity increases (West and Deering,
1995). When events are interactive, normality in
distributions is not the norm. Instead Pareto
distributions dominate because positive feedback
processes (or other scale-free dynamics: Andriani
and McKelvey, 2007) leading to extreme events
occur more frequently than ‘normal’ bell-shaped
Gaussian-based statistics lead us to expect.
Physical, biological, social, organizational, and

electronic systems show an impressive variety of
power law phenomena (Kaye, 1993). We list 80
kinds of power laws ranging from atoms to galaxies,
DNA to species, and networks to wars in Table 1.5

Many leading scholars believe that fractals are the
best analytical framework to describe the origin and
shape of many natural objects (Bak, 1996; West and
Deering, 1995; Newman, 2005). Given the ubiquity
of these findings, and the nature of the underlying
scale-free theory, we think they are equally ubiqui-
tous in organizations, but unknown and unappre-
ciated as to their causes and effects.

Fractal geometry
Fractals are not idle mathematical curiosities.
Fractals and power laws are found from atomic
nanostructures (B10"10m) to galactic megaparsecs
(B1022m) – across a range of 32 orders of mag-
nitudes (Baryshev and Teerikorpi, 2002). In biology,
West et al. (1997) demonstrate a power law relation-
ship between the mass and metabolism of virtually
any organism and its components – based on fractal
geometry of distribution of resources – across 27
orders of magnitude (of mass). Self-similarity is
key to a fundamental property of fractals and
power laws; linear scalability is now recognized
as an inherent characteristic of living systems
(Gell-Mann, 2002). We demonstrate this in more
detail in the following examples; we show linear
scalability and power laws occurring at multiple
social and organizational levels of analysis.

Power laws at different category levels of social
analysis
Linear scalability and power law effects appear
within and at different category levels of analysis,
from language down to networks. We start with
language – the broadest complex adaptive system –
and then progress down to cities, markets, villages,
and networks. A particular scale-free cause operates
across levels within each category level, but they
differ from one category level to the next.
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Language
Estoup (1916) and Zipf (1949) found that a power
law applies to word frequencies. Casti (1994:
Chapter 6) shows that, whereas a monkey at a
typewriter generates different words of equal length
at equal probability, word usage in English follows
a perfect power law: if word usage frequencies
and rank order are plotted on double-log scales,
the words the, of, and, to, I, or, say, really, quality

diminish at a perfect "1 slope.6 Zipf’s law, a rank/
frequency power law, is a classic example of a scale-
free effect.

Cities
Auerbach (1913) discovered that the rank/size plot
of American metropolitan cities obeys a power law
(on a double logarithm graph, size and rank of cities
fit a straight line with slope of "1). Krugman (1996)
replicated it in the 1990s. His findings were so
remarkable that he concluded: ‘We are unused to
seeing regularities this exact in economics – it is so
exact that I find it spooky’ (p 40). They are shown
to apply to cities from 1790 to 1993 when ranked
by population (Auerbach, 1913; Zipf, 1949; Krug-
man, 1996). Krugman suggests the city power-law
signature signifies self-organized economies. Using
2005 data, we show the baseline power law
signature of several apparently fully self-organizing
economies – US, Japan, China, India, and Turkey –
in Figure 2. We do this to give a quick ‘power law
look’ of other seemingly well-performing econo-
mies besides the US.

Markets
The case against the ‘standard’ model in finance is set
by Mandelbrot (Mandelbrot and Hudson, 2004: 13)

Normal 
Distribution

Pareto 
Distribution

Figure 1 Gaussian vs Pareto distributions.

U.S.

China

India

Japan

Turkey

10000

1000

100

10

1
10000 100000 1000000

Rank
10000000 100000000

Lo
g 

of
 p

op
ul

at
io

n

Figure 2 Log–log depiction of city rank in economies showing self-organization-based power laws based on city rank/size
distributions (2005 data). Data from http://population.mongabay.com/ (accessed 31 March 2007)
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with a simple observation:

By the conventional wisdom, August 1998 simply should
never have happened. y The standard theories y estimate
the odds of that final, August 31, collapse, at one in 20million
– an event that, if you traded daily for nearly 100,000 years,
you would not expect to see even once. The odds of getting
three such declines in the same month were even more
minute: about one in 500 billion (p 4). y [An] index swing
of more than 7% should come once every 300,000 years; in
fact, the twentieth century saw forty-eight such days.

The reason for the discrepancy between reality
and theory lies in the crucial assumption by finance
orthodoxy: variations in price are statistically in-
dependent, and normally distributed. These assum-
ptions allow the use of calculus, modern probability
and statistical theory, and give rise to a vast edifice
of sophisticated mathematics. However, they con-
flict with reality.

Movies
Another example of power laws in economics ap-
pears in the book Hollywood Economics (De Vany,
2004). He shows that movie profits are Pareto-
distributed. He demonstrates that the fat tails of the
Pareto distribution dominate the movie industry:
extreme events occur that should be negligible in a
Gaussian world. The industry survives thanks to
blockbuster movies that ‘have legs’ and compensate
for the dismal failures of most movies – which have
little effect on a studio’s financial performance. In
fact, movies don’t seem to show any significant
correlation between any of the variables used to
predict final profits. The only recognizable pattern
is the truncated Pareto distribution of profits.

Structural complexity of villages
Galileo’s square-cube law is the oldest recognized
cause of scale-free dynamics and power law out-
comes. In a study of 46 single-community societies,
Carneiro (1987) shows that many villages never
exceed a relatively small size because their organiz-
ing ability does not keep up with the volume of
their population. The square-cube law limits their
size unless they develop what he terms structural
complexity, which allows their organizing ability
(the square) to keep up with population (the cube).
As their population grows, villages face a stark
choice: split or evolve. By splitting they get their
population volume back down into a proper rela-
tionship with their organizing ability. By evolving
they develop additional complexity traits (Carneiro’s
term) that give them the organizing capability to
cope with larger population. We apply the square-
cube law to organizations later on.

Social networks
The legendary Hungarianmathematician Paul Erdos,
in introducing random network theory, assumed
links are randomly distributed across nodes and
form a bell-shaped distribution, wherein most
nodes have a typical number of links, with the
frequency of remaining nodes rapidly decreasing
on either side of the maximum. Watts and Strogatz
(1998) show, instead, that real networks follow the
small world phenomenon whereby society is visua-
lized as consisting of weakly connected clusters,
each having highly interconnected members within.
This structure allows cohesiveness (high clustering
coefficient) and speed/spread of information (low
path length) across the whole network. Studying
the World Wide Web, Barabási et al. (2000) find that
the structure of the Web shows a power law
distribution, where most nodes have only a few
links, and a tiny minority – the hubs – are dispro-
portionately very highly connected. The system is
scale-free: no node can be taken to represent the
scale of the system. Defined as a scale-free network,
the distribution shows (nearly) infinite variance
and an unstable mean. It turns out that most real
life small world networks are scale-free (Ball, 2004)
and fractal (Song et al., 2005). Scale-free networks
appear in fields as disparate as epidemiology, the
metabolism of cells, the Internet, and networks of
sexual contacts (Liljeros et al., 2001).

Power laws at different levels of organizational
analysis
Organizational power law findings have been
increasing as of late. In this section we show that
they apply both within and at different category
levels of analysis. Though we cover only four levels
in more detail here, we show 24 kinds of business-
organization-related power law effect in Table 1. As
before, we point to the various underlying scale-free
causes creating scalability within each level.

Industrial agglomerations
Simon’s (1955) and Axtell’s (2001) findings that
firms’ size distribution follows a power law distri-
bution is not related to geography. We ask whether
the power law distribution of firms’ size holds when
geographic agglomerations are analyzed – in other
words, whether the fact that firms share the same
territory and consequently have a higher probabil-
ity of interacting with each other plays a role in the
firms’ size distribution. Here we report the work
that one of us has done on power laws and indus-
trial agglomerations in Italy (Andriani, 2003a, b).
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The agglomerations we consider are the so-called
travel-to-work areas (TWAs)7 in Italy. To test whether
Italian industrial agglomerations follow a power
law, we use linear regression. The data show that
interconnected agglomerations of firms very strongly
fit the rank/size power law distribution with slope
of "1 (see Figure 3). The fact that the distribution of
firms’ size is power law distributed indicates that
the underlying growth mechanisms follow a power
law (see also Stanley et al., 1996). Interestingly, we
don’t see any significant distinction between agglo-
meration based on industrial clusters and generic
agglomerations. This is surprising, as it indicates
that the growth mechanisms are independent of
the internal logic of organizing. We speculate that
the power law distribution in firms’ size points
towards a universal growth mechanism, based on a
fractal distribution of economic resources.

Firms
Stanley et al. (1996) report a study of the statistical
properties of all publicly traded manufacturing
firms listed in Compustat (US) for the period
1975–1991. They find that variance in growth rate
is Paretian, not Gaussian, and follows a power law
with exponent b:

sðs0Þ ¼ aS"b
0 ð1Þ

where s (s0) is standard deviation of growth/year
based on 1 January sales value, S0; growth
rate¼ln(S1/S0)¼change in sales year to year;
s0&lnS0; a is a constant; and b is the slope of factors
affecting growth (b ranges from 1

2 to 0).
This equation holds over seven magnitudes of firm

size, whether growth is measured as cost of goods sold
(bB0.16), assets (bB0.17), property, plant and equip-
ment (bB0.18), or number of employees (bB0.16).

Stanley et al. conclude that processes governing
growth rates are scale-free. They give an example of
a hierarchical ‘Fordist’ type organization where the
CEO can order an increase in production. If it is
carried out exactly from top to bottom of the firm,
then the organization is strongly interdependent
(b¼0 for total top-down control). But lower-level
managers and employees rarely follow orders
exactly. If they all ignore the CEO’s order – that is,
all parts of the firm operate independently – then
b¼1

2. Usually the employees follow orders with
some probability. Thus, for b¼B0.15 or so (given
the findings by Stanley et al.), we expect a power
law effect to obtain. Note that bB0.15 could be due
to a CEO’s order implemented with some prob-
ability, or it could be due to an emergent self-
organizing process by the employees. Bottom line:
either top-down control or bottom-up self-organi-
zation can produce bB0.15 – and a power law event
– as depicted in Figure 4.

Internal structure
Nobel Laureate Herbert Simon (1962) argued the
case for ‘nearly decomposable’ subunits – the basis
of what is now called ‘modular design’ (Baldwin
and Clark, 2000). The idea of growing by subdivid-
ing organizations into modular parts responds to a
well-known cause of scalable dynamics: the square-
cube law. It explains the design of the cauliflower: as
its volume grows to assure it a survivable mass in its
niche, the cauliflower subdivides into ever small
parts to assure that the ratio of its energy-gathering
surface stays in required proportion to its volume.
Mason Haire (1959) first applied the square-cube
law successfully to four firms. Levy and Donhowe
(1962) confirmed his findings in 62 firms in eight
industries. Stephan (1983) applied the square-cube
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Figure 3 Comparison of cluster power law with the "b slope power law (cumulative distribution).
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law to firms in terms of effectiveness. Employees
dealing with people outside the firm are surface
employees – they bring in the resources from the
environment. Volume employees are those inside who
produce and coordinate: they are resource users. As
firms grow, then, they have to maintain the square-
cube ratio by adding more surface units, or by
making them more efficient. This creates the
square-cube power law effect.

Internal decision events
Diatlov (2005) applies power law dynamics to intra-
organizational decision events. For years Mintzberg
has been pushing the idea of strategies as weeds
(Mintzberg and McHugh, 1985). Diatlov quotes
Mintzberg et al. as follows:

Strategies could be traced back to a variety of little actions
and decisions made by all sorts of different people some-
times accidentally or serendipitously, with no thought of
their strategic consequences. Taken together over time,
these small changes often produce major shifts in direction.
(Mintzberg et al., 1998: 178)

Diatlov also observes that Braybrooke and
Lindblom’s (1963) disjointed incrementalism fits
Mintzberg et al.’s view. Also building from Lind-
blom’s (1959) science of muddling through, Cohen
et al. (1972) develop their organized anarchy approach
– the ‘garbage-can model’. Weeds, muddling, and
organized anarchy reflect both top-down and bot-
tom-up order-creation fitting Stanley et al.’s bB0.15.
Diatlov’s research (2005) provides data in support

of the foregoing power law argument. He tracks the
implementation of ‘information technology’ inside
financial institutions, ranging from local, lower-
level, short-term, frequently changed decision
events to longer-term, upper-level, and more
pervasive managerial decisions covering longer
time horizons. He is the first researcher we know
of who shows a rough power law configuration of
internal organizational decision events.
Power laws signify the underlying mechanism –

scale-free causes (Andriani and McKelvey, 2007).
This mirrors the biological, social, and organization

power law findings in Table 1. While extreme events
and consequences may be most obvious among
markets, earthquakes, and hurricanes, evidence that
indicates analogous extreme events appears among
social and organizational phenomena.

Self-organized criticality and tension effects
Per Bak’s self-organized criticality (SOC) is a scale-free
theory that applies to the frequency/magnitude of
change events, as opposed to ‘things’ such as words,
cities, or firms. It readily applies to business
changes, as demonstrated by Stanley et al. (1996).
In the next section we then apply SOC theory to
explain the tension-based criticality state that, once
reached, produces Pareto rather than Gaussian
distributions. We mention key IB tensions in the
subsequent section.

Bak’s ‘self-organized criticality’ power law
Self-organized criticality (SOC) is symbolized by
Bak’s (1996) sandpile experiments. A sandpile
subjected to an infinitesimal external perturbation
(sequentially adding single grains of sand) evolves
toward a critical state, characterized by a critical
slope, whereby any additional grain may induce a
systemic reaction that can span any order of
magnitude, with a power law frequency distribu-
tion. The tension imposed by gravity is at the core
of criticality, along with irregularly shaped grains.
Starting from a flat surface, as grains of sand
accumulate they are i.i.d. Being irregular, they cling
together enough to form a pile. When the edge of
the pile reaches a particular angle (criticality), the
gravitational tension against piling higher domi-
nates the ‘clinging’ effect. This happens via small to
large avalanches of sand. The distribution of many
smaller to one large change shows a power law.
This is counter-intuitive. We generally assume a

linear relationship between perturbation size and a
system’s reaction: that is, small causes yield small
effects. This is true before criticality is attained. SOC
dynamics arise when an emergent system of links
connects local pockets into a co-evolving whole
such that small and local fluctuations may be

Increasing independence of agents Increasing hierarchy

Self-organization 
space     

 = 0.5 ~ ~ 0.1 ~ ~ 0.2 = 0

Figure 4 Self-organization between agent autonomy and hierarchical systems.
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amplified into extreme effects. As the tension in the
system increases to the SOC limit (usually as a
result of externally imposed tension; in Bak’s SOC
this is a function of the accumulating sand grains),
independent data points become interdependent.
SOC occurs frequently (Bak, 1996; Buchanan,

2000). It generates all of the tension-based, change-
related, event-type power law phenomena in
Table 1: earthquakes, booms and busts in economic
cycles, war casualties, market transactions, movie
and consumer sales, traffic jams, supply chain dyna-
mics, and so on. The SOC dynamic appears across
disparate fields. Two implications follow:

(1) Systems spontaneously tune themselves
towards self-critical states (Kauffman, 1995):
that is, ‘the system organizes itself towards the
critical point where single events have the
widest possible range of effects’ (Cilliers, 1998:
97). This makes Gaussian statistics inappropri-
ate for the study of SOC.

(2) The conventional explanation regarding macro
events is imputed to comparatively large exo-
genous causes. Instead, according to SOC,
endogenous fluctuations (causes) may be pro-
gressively amplified until a catastrophic chain
reaction takes place. For instance, in Scheinkman
and Woodford’s (1994) model, economic shocks
in idealized economies can be initiated by tiny
endogenous fluctuations.

Tension-induced SOC
While tension equates to Bak’s ‘criticality’ slope in a
sandpile, it equates to Rc1 in thermodynamics and
complexity science. Rc1 is the first critical value of
the Reynolds measure of energy. At this point a
phase transition toward new order occurs: turbu-
lence in fluid flow; the rolling boil in a teapot. Bak’s
insight is that tension level initiates the self-
organization of the system, which spontaneously
evolves above Rc1: this is where change events
become Pareto distributed. It follows that below
Rc1 many change events are i.i.d. and fit Gaussian
thinking, whereas above Rc1 they are typically
Pareto distributed.
Given the foregoing, we can’t just think of

Gaussian and Paretian worlds as ‘either–or’. In
social systems, for sure, tension is the reason why
data points shift from i.i.d. to Pareto distributions
and power laws. In social systems tension may be
induced by political activities: for example, the
tension generated by decades of socialist rule in
Eastern Europe suddenly crystallized in the pacifist

self-organized manifestations that led to the fall of
the Berlin Wall. The slow build-up of popular
antiwar sentiment about the failure of the Vietnam
and Iraq wars eventually induced emergent demon-
strations and political changes. Alternatively, ten-
sion may be induced by managers: Jack Welch’s
phrase, ‘Be #1 or 2 in your industry or your division
will be sold’,8 served to induce tension at GE. Or it
may be induced by competitive context: Schump-
eter (1942) held that environmental shocks are the
tension behind ‘creative destruction’ and entrepre-
neurship. Economists hold that the tension
between supply and demand induces activity in
economies. Tension results from human interactive
learning, influence, and change (Holland, 1988).
While it is convenient for us to compare Gaussian

and Paretian worlds, thereby implying that they
both exist side by side in steady state, in point of fact
the Paretian world often comes and goes depending
on whether the driving tension is above or below
Rc1. Consequently, once people in organizations
take up the gauntlet and respond to tension, their
responses – as acts of change – will be Pareto
distributed, and the nature of the entities created
will also be Pareto distributed. In short, both the
change activities and the emergent structure and
processes will show the power law signature.

Tension in international business
IB is especially subject to the tensions noted above:
political tensions, income disparity, managerially
imposed tensions, entrepreneurially driven ten-
sions, supply/demand and other competitive
economic tensions, and bottom-up tensions from
self-organization based on human interactions.
Buckley and Lessard (2005: Figure 4) list a set of
more specific IB tensions due to: outsourcing or
offshoring; emerging markets; emergent economic
powers such as China and India; virtual firms;
global branding and distribution; and the impact of
multinational firms. Since differences around the
globe are far greater than those within a single
country, the probability of Pareto distributions
around the globe are comparably greater. They
may be set off by:

(1) tensions set in motion by dramatic political,
economic, technology, and economic resources
(as opposed to simple natural resources such as
oil); and

(2) other tensions, such as differences between G8
and developing countries, conflicting national
policies, availability of capital markets, regional
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differences in markets for goods and services,
governmental protection policies (tariffs), differ-
ent labour competencies and labour markets,
and so on (Buckley and Ghauri, 2004).

Additional tension results from the nested struc-
ture of IB. Managers’ decision-making has to
simultaneously take into account multiple nested
dimensions – local, national, international, macro-
regional and global – while at the same time
balancing legal, political, economic, regulatory,
and ecological issues that all affect the evolution
of IB phenomena. SOC-related phenomena emerge
in the structure of organizations and mar-
kets. The firm itself ‘becomes the hub of a network
of interlocking joint ventures’ (Buckley and Ghauri,
2004: 85). The connectivity of the markets causes
the emergence of global commodity chains, which are

sets of inter-organisational networks clustered round one
commodity of product, linking households, enterprises and
states to one another within the world economy. These
networks are situationally specific, socially constructed and
locally integrated, underscoring the social embeddedness of
economic organisation. (Buckley and Ghauri, 2004: 90)

Buckley and Lessard (2005) note the growth of
virtual firms. This sets in motion low- to no-cost
virtual connections such as email, teleconferen-
cing, phoning via Skype, and a host of Internet
transactions. These make interdependence cheaper
and more available. The more dramatic tensions
mentioned immediately above plus the virtually
free transaction costs of the Internet age combine
to produce a far higher probability of fractals,
Pareto distributions and power laws in IB than in
domestic settings. In short, IB managers face Pareto
much more than Gaussian distributions. IB re-
search based on Gaussian statistics is thus based
even more on false assumptions, is more inaccu-
rate, and is more misleading to IB practitioners.

Connectionism vs independence
in organizations

Pareto vs Gauss

Scientists tend to place too much focus on averages y
[whereas] much of the real world is controlled as much by
the ‘tails’ of distributions as means or averages: by the
exceptional, not the commonplace; by the catastrophe, not
the steady drip. y We need to free ourselves from ‘average’
thinking. (Anderson, 1997: 566)

Extremes vs averages
Linear thinking is normal. Scientific and mathe-
matical models are based on the concepts of

equilibrium and linearity. Linearity means two
things: (1) there is proportionality between cause
and effect; and (2) the dynamic of a system can
be reconstructed by summing up the effects of
single causes acting on single components (Nicolis
and Prigogine, 1989), which allows the operation of
efficient causality, the solution of equations, and
predictive modelling. Economics, for instance, is
almost theistic in its (scarcely verified) assumption
that economic phenomena trend toward general
equilibrium (Mirowski, 1989; Ormerod, 1994). How-
ever, this assumption allows linear equations and
analytical simplicity. Meyer et al. (2005) cite
Abbott’s (2001: 7) discussion about how the ‘gen-
eral linear model’ from Newtonian mechanics came
to ‘subtly shape sociologists’ thinking’.
By focusing on systems in equilibrium, research-

ers implicitly accept that the number of possible
states a system may attain is limited (and compu-
table), and that search time following the onset of
instability is short compared with time at equili-
brium. For this to be true, the many elements
comprising a system must be assumed i.i.d. If we
take 100 companies of approximately the same size
belonging to the same sector, assume indepen-
dence, and plot a variable – say profit – we expect
most events to pack around the mean, exhibiting
the classic bell curve. This distribution is by far the
most studied statistical distribution; it is assumed to
characterize correctly most of our discoveries about
the natural and social worlds. The crux of the point,
however, is whether all events are i.i.d. In real life,
for example, these companies could: benchmark
against each other; imitate those perceived as
successful; exchange information; organize cartels;
pursue mergers and acquisitions; compete for
limited resources, etc. In a word, they are most
likely interactive, not independent!
Gaussian and Pareto distributions differ radically.

The Gaussian distribution is reliably characterized
by its stable mean and finite variance (Greene,
2002). A Pareto distribution doesn’t show a well-
behaved mean or variance. A power law therefore
has no ‘average’ that can be assumed to represent
the typical features of the distribution, and no
finite variance upon which to base confidence
intervals (Moss, 2002). The dream of social science –
of building robust frameworks that allow prediction
– is shattered by the absence of statistical regula-
rities in phenomena dominated by persistent
interconnectivity. In the absence of a stable mean
and finite variance, the probabilistic assessment of
individual outcomes becomes much more difficult.
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This point reflects the more pervasive and structur-
al issue of nonlinearity and emergence in complex
systems (Sornette, 2003).

Statistics: obscuring rather than clarifying?
A Paretian world is dominated by extreme events
ignored in a Gaussian world. In fact, the long
tails of Pareto distributions make large extreme
events orders of magnitude more likely. In a
‘normal’ world, where distributions show finite
variance, extreme events are so very rare that they
don’t significantly influence either the mean or the
variance. Hence ignoring them is a safe strategy.
However, insurance companies that use normal
distributions to assess the likelihood of extreme
events often get their fingers burned. Hurricane
Katrina of August 2005, the Christmas 2004
tsunami in Asia, the four hurricanes hitting Florida
in 2004, the tremendous devastation following
floods in Central Europe in 2003, earthquakes
exceeding 7 on the Richter scale – all these indicate
that we are not in a ‘normal’ world. On the
contrary, the action and highest cost is in the tails
(Kirchgaessner and Kelleher, 2005). In the movie
industry almost all the profit come from the
blockbusters – that is, the extreme events – with
the majority of the movies contributing next to
nothing to profitability. In these circumstances,
normal distribution statistics obscure rather than
clarify. The practices of

(1) searching for the mean so as to conveniently
summarize the nature of a phenomenon with-
out attending to the full range of its nature,

(2) relying on variance to build confidence inter-
vals and therefore assess the likelihood of single
events, and – even more damaging –

(3) the habit of excluding outlying events

all become misleading or openly wrong in a Paretian
world. We need methods and statistics that include
extremes rather than assume them away!
Nowhere is a case more compellingly made for a

transition from Gaussian to Paretian statistics than
by Meyer et al. (2005). Even though they start with
‘normal’ organization science research methods, in
each of the four studies conducted they find
interdependency effects dominating and as a result
have to throw out the conventional methods they
start with. They conclude with a focus on ‘hubs,
connectors, and power laws’, scale-free theory, and
the interdependency and positive feedback effects
found in network formations. In their discussion
of their fourth study, they note that ‘observing

outliers may be more informative than observing
average or typical entities.’ They then mention the
Anderson quote we started this section with.

Robustness tests bury the most important
variance

All the world believes it firmly, because the mathe-
maticians imagine that it is a fact of observation and the
observers that it is a theorem of mathematics (Henry
Poincaré, 1913, about the Gaussian distribution).9

Management researchers using statistics as their
basis of making truth claims – usually translated as
findings significant at Po0.05 or 0.01 – use mainly
statistical methods calling for Gaussian distributions.
Gaussian science, so to speak, produces equations
looking like this:

Variance of a dependent variable

¼
Z

variablesþ error term ð2Þ

In Paretian science the expression looks like this:

Variance of a dependent variable

¼
Z

variables þ extremesþ error term
ð3Þ

where ‘extremes’ includes power law events stem-
ming from interacting, self-organizing, mutual
causal agent behaviors rather than the ‘indepen-
dent’ events underlying the variables’ variance
(Sornette, 2003). Normal science, which is really
‘normal-distribution-based science’, wants us to
assume away the presence of the ‘extremes’, turning
instead to tests of robustness within the Gaussian
framework of handling data to show this assump-
tion is not damaging.
Greene’s textbook Econometric Analysis (Greene,

2002, 5th edn) is the standard for many econome-
tricians and other social scientists. Greene begins
his B950 pages of analysis with linear multiple
regression and its five endemic assumptions:

(1) i.i.d.;
(2) linear relationships among variables;
(3) exogenous independent variables;
(4) homoscedasticity and nonautocorrelation; and
(5) normal distribution.

Mostly, the book focuses on how to make econo-
metric methods work when one or more of these
assumptions are untrue of the data. Given non-
linearity, for example, Greene says, ‘by using
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logarithms, exponentials, reciprocals, transcenden-
tal functions, polynomials, products, ratios, and so
on, this ‘linear’ model can be tailored to any
number of situations’ (p 122). As for the normal
distribution assumption, he says:

large sample results suggest that although the usual t and F
statistics are still usable y they are viewed as approxima-
tions whose quality improves as the sample size increases.
y As n increases, the distribution y converges exactly to a
normal distribution. (p 105)

Greene observes that

heteroscedasticity poses potentially severe problems for
inferences based on least squares [regression analysis].
y It is useful to be able to test for homoscedasticity and
if necessary, modify our estimation procedures accordingly.
(p 222)

He then takes some 25 pages to discuss typically
used methods to minimize the effect of varying
variances.
Greene ignores the Pareto, Zipf, Cauchy, and Lévy

distributions. Neither does he discuss interdepen-
dent, interacting, connectionist, interconnecting, coevo-
lutionary, or mutual causal data points, events, or
agents. Nor does he discuss when independence
shifts to interdependence, or the reverse. These
possibilities don’t seem to appear in econometri-
cians’ assumptions about data. And yet, in our fore-
going analysis, we see that most theories underlying
every kind of power law discovery include a refe-
rence to interconnection of some form: power law
phenomena overwhelmingly depend on interactive
agents that, with some probability, are set off in a
cycle of positive feedback progression (or other scale-
free cause) resulting in an extreme event. In fact,
none of the robustness adjustments to failing linear
multiple regression assumptions that Greene dis-
cusses deals with the real-world’s probable – not just
possible – losses of independence. To conclude, the
various robustness tests Greene discusses give no
assurance that modern-day researchers account for
the effects of extreme events in their statistical
analyses.
Let’s put this in California earthquake terms. In

California we average B16,000 insignificant quakes
every year and a ‘really big one’ (e.g., where the
ground moves 30 feet north) once every 150–200
years, with scale 6 and 7 quakes occurring within
decades. In effect, it is as if Greene and virtually all
modern regression modellers want Californians
building and living in high-rise buildings to think
that using a moving average of quake variance over
the thousands of harmless (average) quakes will lead

to building codes that protect against the scale 7 and
8 quakes. Anyone living through a significant quake
in California will tell you this is nonsense. No
amount of so-called ‘robustness improvements’ to
the standard linear multiple regression model allow
it to model the effects of extreme quakes on build-
ings, bridges, lives, and damage costs – that is, the
effects of fat-tailed Pareto distributions. Robustness
tests and ‘solutions’ do not, and cannot, shift statistics
from the Paretian to Gaussian worlds without error.

Some typical errors
In this section we give some examples of the subtle
distortions that Gaussian thinking introduces in
the way research is conducted in IB. The assump-
tions underlying Gaussian thinking – randomness,
independence, and hence additivity – do not apply
to most IB phenomena. Researchers, lacking alter-
native analytical options, are forced to reduce the
complexity of IB phenomena to oversimplified
representations amenable to currently popular
analytical treatments. This leads to incorrect mod-
eling, and to a neglect of coevolution, emergence,
diversity, innovation and extreme events. We see
researchers over and over again studying complex
scalable dynamics but applying the ritualistic tools
of reductionism.

(1) Researchers in IB (and beyond) take an uncriti-
cal approach to unknown or partly unknown
variables. Gaussian thinking legitimizes re-
searchers in assuming that these unknown
variables can be treated as random, normally
distributed and additive. For instance, Shaver
(1998), discussing whether entry mode choice
affects FDI survival writes: ‘I assume that ui is
normally distributed with zero mean and unit
variance. Moreover, ui will be attributable, in
part, to unobservable characteristics that affect
entry mode choice’ (p. 573). ui represents a
disturbance term that affects firm attributes and
industry conditions. Buckley and Carter (2004:
374) write: ‘We shall take it that the vij’s are
normally and independently distributed ran-
dom variables vij(x), dependent on the state of
the world x and with means v̄ij and standard
deviations sij (our emphasis). These researchers
subscribe to the deterministic noise-signal
model (West, 2006): the system is treated as
deterministic, whereas the noise derives from
the system–environment interactions. Conse-
quently, coevolutionary dynamics is relegated to
a disturbance.
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(2) Reality is conveniently linearized, but the im-
plications are not discussed. Take for instance
Buckley and Carter (2004: 376) on knowledge
combination in MNEs. They write:
However, no single individual holds all of the
firm’s knowledge, so that strategic managers are
not the only active deliberative agents. The
participants each act on their own initiative in
response to unfolding particular circumstances,
insofar as they are the individuals with the best
knowledge of these circumstances. Thus the
firm does not comprise a single entrepreneur,
but instead is a team of entrepreneurs, y a
coalition of active agents.
Treating the firm as ‘a team of entrepreneurs’
allows them to reduce the complexity of a firm’s
knowledge to the sum of the contributions of
each ‘entrepreneur’. But it buries the potential
coevolutionary positive feedback or other scal-
ability dynamics in the i.i.d. assumption. The
fact that knowledge at the firm level is usually
an emergent property from a group of indivi-
duals rather than an i.i.d. agent is not discussed.
Hence Gaussian thinking may obscure emer-
gent nonlinear dynamics.

(3) Reliance on Gaussian thinking masks the
intrinsic diversity of IB phenomena. Many
Gaussian-based analyses represent an extremely
simplified version of the field, as, for instance,
when they simplify the field of entry mode into
a third country to the simple dichotomy of
greenfield vs acquisition (Harzing, 2002). For
the sake of analytical treatment, important but
scarcely quantifiable options, such as joint
ventures and mixed mode, are neglected. The
IB field has all to gain from adopting a ‘long tail’
view (Anderson, 2006). Anderson’s research
demonstrates that focusing on average events
in markets leads to a minimum common
denominator view of markets and competition.
Once the focus shifts to the ‘long tail’ of a Pareto
distribution of product sales, a large diversity of
consumer preferences and consequent changes
in business strategy come to light.

(4) There is uncritical acceptance that the task of IB
strategy scholars consists in ‘regressing a mea-
sure of performance on the strategy choice of a
group of firms. The coefficient estimate of the
strategy choice variable has then been used to
identify superior strategies’ (Shaver, 1998: 571).
(a) Even if one accepts the research validity of

this approach, it still means little to the
practitioner. Translating from statistical to

individual case validity means accepting
that the world offers a finite number of
options, that the occurrences of the options
are repeatable, and that the options are
independent. Researchers assume rather
than demonstrate this. Given the aforemen-
tioned global tensions and lowered connec-
tivity costs, this assumption is especially
unlikely to be true in IB.

(b) Researchers don’t seem to be particularly con-
cerned about the emergence of new strate-
gies. New strategies emerge as outliers in the
tail of the distribution, and acquire legiti-
macy by diffusing in progressively larger
samples of the population. Gaussian thinking
masks the emergence of new strategies. The
practice of giving advice to managers on the
basis of statistical relevance offers dubious
usefulness. By focusing on the center of the
distribution, Gaussian thinking hides the
emergence of innovation out in the tail.

(5) Reliance on the Gaussian approach masks
extreme events, such as the emergence of new
strategies.

In this paper we offer a methodological antidote to
‘Gaussianism’. Researchers will object that Paretian
science is at best an interesting promise without
practical mathematical tools and that we indicate
the limitations of existing frameworks without
offering realistic and practical alternatives. We
respond that fractal calculus (although much more
complex and considerably less developed than
corresponding traditional calculus) is a valid platform
to describe fractal phenomena (West et al., 2003).

Redirecting management research
On 9 January 1857 a 7.9 magnitude quake occurred
in California, stretching 220 miles along the San
Andreas Fault. At one point, the part of California
west of the fault moved 30 feet north. Californians
are still waiting for the next ‘big one’. The cost of
the scale 6.7 Northridge quake in 1994 – local to the
LA area with visible earth movement of a few inches –
was $44 billion, with 51 people killed, 9000 injured,
and 22,000 left homeless. A scale 8 quake
is roughly 30 times larger! The really big ones in
financial markets occurred in 1929 and 1987 – some
60 years apart. But just since 1987 we have had other
extreme events: the Asian crisis of 1997, the Russian
meltdown of 1998, the burst of the dotcom bubble
and ensuing Parmalat and Enron et al. collapses in
2001–2003, and the recent subprime-mortgage-
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induced volatility of 2007, with multibillions lost
each time. These are the negative ones. We also have
multibillion dollar positive events such as Microsoft,
GE, Intel, eBay, Google, the growing economic
dominance of China, offshoring in India, growth in
private equity buyouts, and so on.

What basis for truth claims, if not ‘normal’ science
statistics?

Traditional justification logic and normal statistics
Instead of seeing extreme variance in management-
related regression functions as something to use
robustness techniques to eradicate, we suggest that
a more sensible approach is to draw on the way that
physicists and engineers handle Newtonian
mechanics vs relativity theory. Their world changes
depending on the speed at which phenomena are
moving. On earth, theories and methods consistent
with Newtonian mechanics remain valid. As objects
approach the speed of light, theories and methods
consistent with relativity theory apply. For earth-
bound scientists and engineers, however, the ‘old’
Newtonian mechanics applies best.
For global research the ‘new’ is more relevant

than the ‘old’. For us, old is Gaussian-based; new is
Paretian-based science. Our world changes depending
on tension and low-cost-connection effects that make
the new more likely than the old. But, we agree, the
old is still present under low-tension conditions.
Even so, a more sensible approach for global studies
is to begin each study with the following test:

(1) Given proof of independence; use normal
statistics: the old.

(2) in the absence of proof of independence, as-
sume interdependence, use Pareto and power-
law thinking: the new.

We believe this test is vitally important in IB
research, and also in other kinds of social and
management research. The ten examples of power
law phenomena detailed earlier include the possi-
bility of an extreme event stemming from inter-
dependence among agents. Ranging from language
down to organizational decision events, we find it
hard to argue that these and similar power law
dynamics do not pervade IB and most other
management arenas. This doesn’t mean extreme
events occur all the time, everywhere. But it does
mean that some probability of the tension-induced
benefit of positive or risk of negative extremes is
present all the time and everywhere.

Finally, there is a figure/ground reversal. Current
methodology takes the null hypothesis as: phenom-
ena are i.i.d. until proven otherwise (current practice
mostly assumes away the problem). Given the per-
vasive international tensions we discussed earlier,
the null assumption for international (and domes-
tic) research should be one of interdependence until
proof of independence obtains.

Discussion
Many management scholars have pointed to the
growing disjunction between multiparadigmatic
‘science’ appearing in journals and practitioner-
oriented writing (e.g., Lawler et al., 1985; Brief and
Dukerich, 1991; Anderson et al., 2001; Rynes et al.,
2001; McKelvey, 2003a, 2006; Bennis and O’Toole,
2005; Ghoshal, 2005; Van de Ven and Johnson,
2006). We suggest that the fundamental problem
stems from favoring Gaussian over Pareto distribu-
tions. Virtually all of the statistics-based journal
research rests on assumptions of independent events
(i.i.d.) and Gaussian distributions. In obvious con-
trast, if one scans ‘business media’ books, such as
Peters and Waterman (1982), O’Reilly and Pfeffer
(2000), Collins (2001), and so on, one sees that
most of the cases and stories are about extreme
events – successes or failures; they are seldom about
‘averages’. Add to this list cases used in classrooms
and the books describing extreme events we men-
tion at the outset. No wonder there is a disjunction:
managers live in the world where extremes matter as
much or more than i.i.d.; researchers use i.i.d.-based
statistics to report findings about averages. Evidence
suggests that most extremes are due to interdepen-
dency effects.
People lacking personal experience with extreme

events may think averages are acceptable substi-
tutes. People hit by Hurricane Katrina or the Indian
Ocean tsunami, or who live through earthquakes in
Turkey or Japan, floods along the Danube or
Ganges, or survive an avalanche in the Alps think
differently. Natural extremes seem mostly negative.
Business extremes are both positive and negative.
Early employees at Microsoft have one view of an
extreme; those who were at Enron see theirs rather
differently. Scholars need to step beyond the idea
that studying averages is the only ‘good’ science, is
the only method relevant to good management
research, and is what offers something useful to
managers. Sometimes yes, but we think mostly no
for management researchers. Needless to say, this is
an empirical question. We argue that tension forces
setting up the conditions of Per Bak’s (1996) self-
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organized criticality shift firms from i.i.d. to multi-
plicative to interactive causal dynamics.
To bolster our argument that international busi-

ness research needs to attend to the consequences
of interactive as well as i.i.d. events, we start by
listing over 80 kinds of power law phenomenon (in
Table 1). In Nature, they range from atomic and
microbiological to galactic fractals; over 40 are
social and/or organizational. We describe 10 social
and organizational power laws in more detail.
Power law research is an aspect of natural and even
social science that has barely seeped into interna-
tional business or management research – though
we mention Mason Haire’s application of the
square-cube law to organizations in 1959. We are
especially critical of the standard practice of using
robustness methods (Greene, 2002) to conveniently
sweep Paretian phenomena under the rug, so to speak,
and continue with Gaussian analyses and statistics.
Our review of power law phenomena signifi-

cantly challenges the prevailing assumption about
the independence of data points. Once i.i.d. col-
lapses, and interdependence or interaction occurs,
then the seeds of power law formations are planted.
It is just a matter of time, just a matter of proba-
bility, for interactive events to progress into an
extreme event. As long as researchers look at the
real world through the ‘normal’ statistics lens –
which means they have to make the i.i.d. assump-
tion – the result will be Gaussian science and with it
a denial of extreme events, a denial of (nearly)
infinite variance, a denial of unstable means –
adding up to denial of Pareto distributions. All of
these denials act to narrow confidence intervals
and allow researchers falsely to claim statistical
significance and then assert their truth claims. This
has produced many irrelevant and erroneous
results, but bolsters discipline legitimacy.
We propose the obvious solution of adding, and

then stressing more heavily, disciplines where
emergent extreme phenomena, rather than ave-
rages, are dominant features. We mention two of
these, complexity and earthquake science. Lessons from
complexity science are conjoined with econophy-
sics and power laws, and thus embedded through-
out our paper. From earthquake science, we draw
parallel application areas, each of which offers a
different perspective and approach for studying
extreme events, including prediction and protec-
tion (we detail this in Andriani and McKelvey, 2005).
Each application area calls for a different kind of
management and IB research. A number of these
already appear in the Meyer et al. (2005) article (also

detailed in Andriani and McKelvey, 2005). Other
examples are Perrow (1984) and Marcus and Nichols
(1999) – nuclear reactors – and Haunschild and
Sullivan (2002) – airline accidents – though these
studies do not quite get to power law effects.
One of the lessons from earthquake science is that

instead of lumping all earthquakes together, they
study separate samples of scale 7s, 8s or 9s. In point
of fact, we have a large collection of case studies
that are studies of extremes – those mentioned in
the business media books above and also in many
of the MBA teaching cases. We even have multiple
studies of single extremes – parallel to a sample of
scale 8s – e.g., Enron, GE, IBM, Intel, Li Fang, Parmalat,
Salim Group, Xerox. With narrowed samples of
similar extremes, small-sample nonparametric
methods are highly appropriate. Starbuck (no date)
presents 59 slides suggesting other ways of ‘Learn-
ing from Extreme Cases’, as he puts it.
We note that 50% of the power law findings we list

are from highly respected natural sciences. In no way
do we want to suggest that effective science episte-
mology be replaced by one-off case studies or the anti-
science leanings of postmodernists (Holton, 1993;
Koertge, 1998; McKelvey, 2003b). Earthquake science
is a fully legitimate ‘hard’ science. We can learn from
it how to conduct an effective science about extreme
IB, management, or organizational phenomena.
Numerous conditions hold where natural data

points do remain i.i.d.: for example, atoms and most
molecules don’t study, relate to, look at, or learn from,
other atoms or molecules. Sometimes, however, the
imposition of energy past some critical point – we
discuss changes occurring at the first critical value of
an imposed force – turns even independent natural
science data points into interactive ones.10 In natural
science, perhaps, scientists should still start with the
null condition of i.i.d. But in social science, where
people do look at each other, do talk to each other, do
learn from each other, do influence each other, etc., it
seems to us that the null condition is one of
interdependence. Researchers should start with this assump-
tion. They should start with the idea in mind that
extreme events are a natural part of the social world.

No statistical findings, therefore, should be accepted into
the IB, organizational, or management received view if they
gain significance via some assumption device by which
extreme events and (nearly) infinite variance are ignored.

IB is exposed more than any other management
domain to the multiple tensions of changes in
geographical, political, sociological, cultural and
business environments. These tensions increase
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connectivities across many different and once
separated areas of business practice. Such interde-
pendencies call for research methods substantially
different from traditions rooted in linear science,
conventional epistemologies and Gaussian statis-
tics. We agree with Buckley and Lessard (2005)
when they argue that there is a ‘missing middle’ of
IB theory, and that the void should filled by ‘a
community of scholars that cuts across disciplines
and levels with a shared core’. To be IB-relevant,
however, these scholars need new approaches that
fully embrace the diversity, complexity and scal-
ability of the connectivity-dominated phenomena
that constitute contemporary IB. Methods have to
be rooted in dynamic network theory (Newman
et al., 2006) and have to make better sense of
extreme events induced by increased environmen-
tal tension. In sum, we think that IB is a natural
candidate for Pareto-type thinking, and that there
is no other field in management studies that could
profit from it more than IB.
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Notes
1In order: Peters and Waterman (1982); Robison

(1986); Tichy and Sherman (1994); Bredeson (1999);
O’Reilly and Pfeffer (2000); Collins (2001); Fusaro and
Miller (2002); Burgelman (2002); Horcajo (2005);
Newhouse (2007).

2A fractal is ‘a rough or fragmented geometric shape
that can be subdivided in parts, each of which is (at
least approximately) a reduced copy of the whole’
(Mandelbrot and Hudson, 2004: 121). Similarity
across scale is called ‘self-similarity’.

3Our discussion of the organizational and manage-
rial implications of scale-free theory appears elsewhere
because of obvious space limitations; see Andriani and
McKelvey (2007).

4‘Agent’ refers to semi-autonomous entities (i.e.,
‘parts’ of systems), such as atoms, molecules, biomo-
lecules, organelles, organs, organisms, species, pro-
cesses, people, groups, firms, industries, etc.

5This is the most comprehensive list of power law
phenomena across all sciences to date.

6While it appears so in the few words we show, word
usage is not a function of word length overall.

7TWAs are relatively self-contained economic and
social units, calculated by dividing a national territory
into units that maximize internal home-to-work com-
muting and minimize inter-TWA commuting (ISTAT,
1997). TWAs represent an algorithmic way to define
the micro-units of analysis of economic geography and
economic sociology. In Italy TWAs are organized into a
taxonomy (Sforzi, 1990; Cannari and Signorini, 2000)
that divides the agglomerations into two groups:
industrial-cluster-based (type D) and non-cluster-
based (type A) agglomerations. The classification ranks
industrial agglomerations according to the probability
of including within their boundary an industrial
cluster. The theoretical ground for this work is rooted
in the Neo-Marshallian theory of industrial clusters
(Storper, 1997). Type D: r¼0.997, Po0.0001, slope b¼
"0.995. Type A: r¼0.995, Po0.0001, slope b¼"0.997.

8Actually, ‘we would fix, sell, or close’ (Tichy and
Sherman, 1994: 108).

9Quoted in West and Deering (1995: 83).
10A classic form of this, known as the ‘Bose–Einstein

condensate,’ explains the onset of superconductivity:
at the tension limit – in this case because of extreme
cold – particles shift from independence to interactiv-
ity, thereby allowing superconductivity. For more,
see: [www document] http://en.wikipedia.org/wiki/
Bose-Einstein_condensate (accessed 30 March 2007).
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