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Complexity Theory in
Organization Science:
Seizing the Promise or

Becoming a Fad?
Bill McKelvey

Over the past 35 years complexity theory has become
a broad-ranging subject that is appreciated in a
variety of ways, illustrated more or less in the books
by Anderson, Arrow, and Pines (1988), Nicolis and

Prigogine (1989), Mainzer (1994), Favre et al. (1995), Belew and
Mitchell (1996), and Arthur, Durlauf, and Lane (1997). The study
of complex adaptive systems (Cowan, Pines, and Meltzer, 1994) has
become the ultimate interdisciplinary science, focusing its model-
ing activities on how microstate events, whether particles, mole-
cules, genes, neurons, human agents, or firms, self-organize into
emergent aggregate structures.

A fad is “a practice or interest followed for a time with exagger-
ated zeal” (Merriam Webster’s, 1996). Management practice is
especially susceptible to fads because of the pressure from man-
agers for new approaches and the enthusiasm with which manage-
ment consultants put untested organization science ideas into
immediate practice. Complexity theory has already become the
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latest in a long string of management fads, such as T-groups, job
enrichment, OD, autonomous work groups, quality circles, JIT
inventories, and reengineering. A fad ultimately becomes discred-
ited because its basic tenets remain uncorroborated by a progres-
sion of research investigations meeting accepted epistemological
standards of justification logic. Micklethwait and Wooldridge
(1996) refer to fad-pushing gurus as “witch doctors.”

The problem of questionable scientific standards in organiza-
tion science is not limited to complexity theory applications
(Pfeffer, 1993; McKelvey, 1997). Nevertheless, the application of
complexity theory to firms offers another opportunity to consider
various epistemological ramifications. The problem is exacerbated
because complexity theory’s already strong showing in the physi-
cal and life sciences could be emasculated as it is translated into an
organizational context. Furthermore, the problem takes on a sense
of urgency since:

1. complexity theory appears on its face to be an important addi-
tion to organization science;

2. it is already faddishly applied in a growing popular press and by
consulting firms;1 and 

3. its essential roots in stochastic microstates have so far been
largely ignored. 

Thus, complexity theory shows all the characteristics of a short-
lived fad.

Clearly, the mission of this and subsequent issues of Emergence
is systematically to build up a base of high-quality scientific activ-
ity aimed at supporting complexity applications to management
and organization science—thereby thwarting faddish tendencies.
In this founding issue I suggest a bottom-up focus on organiza-
tional microstates and the adoption of the semantic conception of
scientific theory. The union of these two hallmarks of current sci-
ence and philosophy, along with computational modeling, may
prevent complexity theory from becoming just another fad.

EMERGENCE

6

Issue 1-1  4/3/99  5:54 pm  Page 6



BOTTOM-UP ORGANIZATION SCIENCE

In their book Growing Artificial Societies, Epstein and Axtell
(1996) join computational modeling with modern “bottom-up” sci-
ence, that is, science based on microstates. A discussion of bottom-
up organization science must define organizational microstates in
addition to defining the nature of aggregate behavior. Particle
models rest on microstates. For physicists, particles and
microstates are one and the same—the microstates of physical
matter are atomic particles and subparticles. For chemists and
biologists, microstates are, respectively, molecules and biomole-
cules. For organization scientists, microstates are defined as dis-
crete random behavioral process events.

So if they are not individuals, what are organizational
microstates? Decision theorists would likely pick decisions.
Information theorists might pick information bits. I side with
process theorists. Information bits could well be the microstates
for decision science and electronic bytes may make good
microstates for information science, but they are below the organi-
zational lower bound and are thus uninteresting to organization
scientists. In the hierarchy of sciences—physics, chemistry, biol-
ogy, psychology, organization science, economics—the lower
bound separates a science from the one lower in the hierarchy.
Since phenomena in or below the lower bound—termed
microstates—are outside a particular science’s explanatory inter-
est, platform assumptions are made about whether they are “uni-
form” as in economists’ assumptions about rational actors, or “sto-
chastic” as in physicists’ use of statistical mechanics on atomic par-
ticles or kinetic gas molecules. Sciences traditionally adopt the
convenience of assuming uniformity early in their life-cycle and
then later drift into the adoption of the more complicated stochas-
tic assumption.

Process theorists define organizational processes as consisting
of multiple events. Van de Ven (1992) notes that when a process as
a black box or category is opened up it appears as a sequence of
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events. Abbott (1990) states: “every process theory argues for pat-
terned sequences of events” (p. 375). Mackenzie (1986, p. 45)
defines a process as “a time dependent sequence of elements gov-
erned by a rule called a process law,” and as having five compo-
nents (1986, p. 46):

1. The entities involved in performing the process;
2. The elements used to describe the steps in a process;
3. The relationships between every pair of these elements;
4. The links to other processes; and
5. The resource characteristics of the elements.

A process law “specifies the structure of the elements, the rela-
tionships between pairs of elements, and the links to other
processes” and “a process is always linked to another, and a process
is activated by an event” (Mackenzie, 1986, p. 46). In his view, an
event “is a process that signals or sets off the transition from one
process to another” (1986, pp. 46–7).

Mackenzie recognizes that in an organization there are multi-
ple events, chains of events, parallel events, exogenous events, and
chains of process laws. In fact, an event is itself a special process.
Furthermore, there exist hierarchies of events and process laws.
There are sequences of events and process laws. The situation is
not unlike the problem of having a Chinese puzzle of Chinese puz-
zles, in which opening one leads to the opening of others (1986, p.
47). Later in his book, Mackenzie describes processes that may be
mutually causally interdependent. In his view, even smallish firms
could have thousands of process event sequences (1986, p. 46).

As process events, organizational microstates are obviously
affected by adjacent events. But they are also affected by broader
fields or environmental factors. While virtually all organization
theorists study processes—after all, organizations have been
defined for decades as consisting of structure and process (Parsons,
1960)—they tend to be somewhat vague about how and which
process events are affected by external forces (Mackenzie, 1986).
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An exception is Porter’s (1985) value chain approach, where what
counts is determined directly by considering what activities are
valuable for bringing revenue into the firm.

Those taking the “resource-based view” of strategy also
develop the relationship between internal process capabilities and
a firm’s ability to generate rents, that is, revenues well in excess of
marginal costs. These attempts to understand how resources inter-
nal to the firm act as sustainable sources of competitive advantage
are reflected in such labels as the “resource based-view”
(Wernerfelt, 1984), “core competence” (Prahalad and Hamel,
1990), “strategic flexibilities” (Sanchez, 1993), and “dynamic capa-
bilities” (Teece, Pisano, and Schuen, 1994). 

Those studying aggregate firm behavior increasingly have diffi-
culty holding to the traditional uniformity assumption about
human behavior. Psychologists have studied individual differences
in firms for decades (Staw, 1991). Experimental economists have
found repeatedly that individuals seldom act as uniform rational
actors (Hogarth and Reder, 1987; Camerer, 1995). Pheno-
menologists, social constructionists, and interpretists have discov-
ered that individual actors in firms have unique interpretations of
the phenomenal world, unique attributions of causality to events
surrounding them, and unique interpretations, social construc-
tions, and sensemakings of others’ behaviors that they observe
(Silverman, 1971; Burrell and Morgan, 1979; Weick, 1995; Reed
and Hughes, 1992; Chia, 1996). Resource-based view strategists
refer to tacit knowledge, idiosyncratic resources, and capabilities,
and Porter (1985) refers to unique activities. Although the field-
like effects of institutional contexts on organizational members are
acknowledged (Zucker, 1988; Scott, 1995), and the effects of social
pressure and information have a tendency to move members
toward more uniform norms, values, and perceptions (Homans,
1950), strong forces remain to steer people toward idiosyncratic
behavior in organizations and the idiosyncratic conduct of organi-
zational processes:
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1. Geographical locations and ecological contexts of firms are
unique.

2. CEOs and dominant coalitions in firms are unique—different
people in different contexts.

3. Individuals come to firms with unique family, educational, and
experience histories.

4. Emergent cultures of firms are unique.
5. Firms seldom have totally overlapping suppliers and customers,

creating another source of unique influence on member
behavior.

6. Individual experiences within firms, over time, are unique,
since each member is located uniquely in the firm, has differ-
ent responsibilities, has different skills, and is surrounded by
different people, all forming a unique interaction network.

7. Specific firm process responsibilities—as carried out—are
unique due to the unique supervisor–subordinate relationship,
the unique interpretation an individual brings to the job, and
the fact that each process event involves different materials and
different involvement by other individuals.

Surely the essence of complexity theory is Prigogine’s (Prigogine
and Stengers, 1984; Nicolis and Prigogine, 1989) discovery that: 

1. “At the edge of chaos” identifiable levels of imported energy,
what Schrödinger (1944) terms “negentropy,” cause aggregate
“dissipative structures” to emerge from the stochastic “soup” of
microstate behaviors.

2. Dissipative structures, while they exist, show predictable behav-
iors amenable to Newtonian kinds of scientific explanation.

3. Scientific explanations (and I would add epistemology) most
correctly applicable to the region of phenomena at the edge of
chaos resolve a kind of complexity that differs in essential fea-
tures from the kinds of complexity that Newtonian science,
deterministic chaos, and statistical mechanics attempt to
resolve (Cramer, 1993; Cohen and Stewart, 1994). 
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None of these contributions by Prigogine may sensibly be applied
to organization science without a recognition of organizational
microstates.

THE IMPORTANCE OF THE SEMANTIC CONCEPTION

Philosophers differentiate entities and theoretical terms into those
that:

1. are directly knowable via human senses;
2. may be eventually detectable via further development of meas-

ures; or 
3. are metaphysical in that no measure will allow direct know-

ledge of their existence. 

Positivists tried to solve the fundamental dilemma of science—
How to conduct truth-tests of theories, given that many of their con-
stituent terms are unobservable and unmeasurable, seemingly
unreal terms, and thus beyond the direct first-hand sensory
knowledge of investigators? This dilemma clearly applies to organ-
ization science in that many organizational terms, such as
legitimacy, control, bureaucracy, motivation, inertia, culture, effec-
tiveness, environment, competition, complex, carrying capacity,
learning, adaptation, and the like, are metaphysical concepts.
Despite years of attempts to fix the logical structure of positivism,
its demise was sealed at the 1969 Illinois symposium and its epi-
taph written by Suppe (1977), who gives a detailed analysis of its
logical shortcomings.

It is clear that positivism is now obsolete among modern
philosophers of science (Rescher, 1970, 1987; Devitt, 1984; Nola,
1988; Suppe, 1989; Hunt, 1991; Aronson, Harré, and Way, 1994; de
Regt, 1994). Nevertheless, the shibboleth of positivism lingers in
economics (Blaug, 1980; Redman, 1991; Hausman, 1992), organi-
zation science (Pfeffer, 1982, 1993; Bacharach, 1989; Sutton and
Staw, 1995; Donaldson, 1996; Burrell, 1996), and strategy
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(Camerer, 1985; Montgomery, Wernerfelt, and Balakrishnan,
1989). It is still being used to separate “good normal science” from
other presumably inferior approaches.

Although the untenable elements of positivism have been aban-
doned, many aspects of its justification logic remain and have been
carried over into scientific realism. Positivism’s legacy emphasizes
the necessity of laws for explaining underlying structures or
processes and creating experimental findings—both of which pro-
tect against attempting to explain naturally occurring accidental reg-
ularities. They also define a sound scientific procedure for develop-
ing “instrumentally reliable” results. Instrumental reliability is
defined as occurring when a counterfactual conditional, such as “if A
then B,” is reliably forthcoming over a series of investigations. While
positivists consider this the essence of science, that is, the instru-
mental goal of producing highly predictable results, scientific real-
ists accept instrumentally reliable findings as the beginning of their
attempt to produce less fallible scientific statements. Elements of
the legacy are presented in more detail in McKelvey (1999c).

Three important normal science postpositivist epistemologies
are worth noting. First, scientific realists argue for a fallibilist defi-
nition of scientific truth—what Popper (1982) terms “verisimili-
tude” (truthlikeness). Explanations having higher fallibility could
be due to the inclusion of metaphysical rather than observable
terms, or they could be due to poor operational measures, sam-
pling error, or theoretical misconception, and so forth. Given this,
progress toward increased verisimilitude is independent of
whether theory terms are observable or metaphysical, because
there are multiple causes of high fallibility. This idea is developed
more fully by Aronson, Harré, and Way (1994). Second, the seman-
tic conception of theories (Beth, 1961; Suppe, 1977, 1989) holds
that scientific theories relate to models of idealized systems, not
the complexity of real-world phenomena and not necessarily to
self-evidently true root axioms. And third, evolutionary epistemol-
ogy (Campbell, 1974, 1988, 1995; Hahlweg and Hooker, 1989)
emphasizes a selectionist process that winnows out the more
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fallible theories. Collectively, these epistemologies turn the search
for truth on its head—instead of expecting to zero in on an exactly
truthful explanation, science focuses on selectively eliminating the
least truthful explanations. Elsewhere I elaborate the first and
third of these contributions under the label Campbellian Realism
(McKelvey, 1999c).

The semantic conception’s model-centered view of science
offers a useful bridge between scientific realism and the use of
computational experiments as a basis of truth-tests of complexity
theory-rooted explanations in organization science. Scientific real-
ism builds on a number of points. First, Bhaskar (1975/1997) sets
up the model development process in terms of experimentally cre-
ated tests of counterfactuals, such as “force A causes outcome B,”
that protect against accidental regularities. Second, Van Fraassen
(1980), drawing on the semantic conception, develops a model-
centered epistemology and sets up experimental (empirical2) ade-
quacy as the only reasonable and relevant “well-constructed
science” criterion. Third, accepting the model-centered view and
experimental adequacy, Aronson, Harré, and Way (1994) then add
ontological adequacy so as to create a scientific realist epistemol-
ogy. In their view, models are judged as having a higher probabil-
ity of truthlikeness if they are:

1. experimentally adequate in terms of a theory leading to experi-
mental predictions testing out; and 

2. ontologically adequate in terms of the model’s structures accu-
rately representing that portion of reality deemed to be within
the scope of the theory at hand. 

Finally, de Regt (1994) develops a “strong argument” for scientific
realism building on the probability paradigm, recognizing that
instrumentally reliable theories leading to highly probable know-
ledge result from a succession of eliminative inductions. 

After Beth (1961), three early contributors to the semantic con-
ception emerged: Suppes (1961, 1962, 1967), Suppe (1967, 1977,
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1989), and van Fraassen (1970, 1980). Subsequent interest by
Beatty (1981, 1987), Lloyd (1988), and Thompson (1989) in biology
is relevant because biological theories, like organization theories,
pertain to entities existing in a competitive ecological context. The
structure of competition-relevant theories in both disciplines suf-
fers the same epistemological faults (Peters, 1991). Suppes chooses
to formalize theories in terms of set-theoretic structure, on the
grounds that, as a formalization, set theory is more fundamental to
formalization than are axioms. 

Instead of a set-theoretic approach, van Fraassen chooses a state
space and Suppe a phase space platform. A phase space is defined as
a space enveloping the full range of each dimension used to describe
an entity. Thus, one might have a regression model in which vari-
ables such as size (employees), gross sales, capitalization, production
capacity, age, and performance define each firm in an industry, and
each variable might range from near zero to whatever number
defines the upper limit on each dimension. These dimensions form
the axes of a Cartesian space. In the phase space approach, the task
of a formalized theory is to represent the full dynamics of the vari-
ables defining the space, as opposed to the axiomatic approach
where the theory builds from a set of assumed axioms. A phase space
may be defined with or without identifying underlying axioms. The

set of formalized statements of the the-
ory is not defined by how well they
interpret the set of axioms, but rather by
how well they define phase spaces
across various phase transitions.

Having defined theoretical ade-
quacy in terms of how well a theory

describes a phase space, the question arises of what are the rele-
vant dimensions of the space. In the axiomatic conception, axioms
are used to define the adequacy of the theory. In the semantic con-
ception, adequacy is defined by the phenomena. The current read-
ing of the history of science by the semantic conception philoso-
phers shows two things: 
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1. Many modern sciences do not have theories that inexorably
derive from root axioms.

2. No theory ever attempts to represent or explain the full com-
plexity of some phenomenon. 

Classic examples given are the use of point masses, ideal gases,
pure elements and vacuums, frictionless slopes, and assumed uni-
form behavior of atoms, molecules, and genes. Scientific laboratory
experiments are always carried out in the context of closed systems
whereby many of the complexities of natural phenomena are set
aside. Suppe (1977, pp. 223–4) defines these as “isolated idealized
physical systems.” Thus, an experiment might manipulate one
variable, control some variables, assume many others are random-
ized, and ignore the rest. In this sense the experiment is isolated
from the complexity of the real world and the physical system rep-
resented by the experiment is necessarily idealized.

A theory is intended to provide a generalized description of a
phenomenon, say, a firm’s behavior. But no theory ever includes so
many terms and statements that it could effectively accomplish
this. A theory:

1. “does not attempt to describe all aspects of the phenomena in its
intended scope; rather it abstracts certain parameters from the
phenomena and attempts to describe the phenomena in terms of
just these abstracted parameters” (Suppe, 1977, p. 223);

2. assumes that the phenomena behave according to the selected
parameters included in the theory; and 

3. is typically specified in terms of its several parameters with the
full knowledge that no empirical study or experiment could
successfully and completely control all the complexities that
might affect the designated parameters—theories are not
specified in terms of what might be experimentally successful. 

In this sense, a theory does not give an accurate characterization of
the target phenomena—it predicts the progression of the modeled
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phase space over time, which is to say that it predicts a shift from
one abstract replica to another under the assumed idealized con-
ditions. Idealization could be in terms of the limited number of
dimensions, assumed absence of effects of the many forces not
included, mathematical formalization syntax, or the assumed bear-
ing of various auxiliary hypotheses relating to theories of experi-
ment, theories of data, and theories of numerical measurement. “If
the theory is adequate it will provide an accurate characterization
of what the phenomenon would have been had it been an isolated
system” (Suppe, 1977, p. 224; my italics).

MODEL-CENTERED SCIENCE

The central feature of the semantic conception is the pivotal role
given to models. Figure 1 shows three views of the relation among
theory, models, and phenomena. Figure 1a stylizes a typical
axiomatic conception: 

1. A theory is developed from its axiomatic base.
2. Semantic interpretation is added to make it meaningful in, say,

physics, thermodynamics, or economics.
3. The theory is used to make and test predictions about the

phenomena.
4. The theory is defined as experimentally and ontologically ade-

quate if it both reduces to the axioms and is instrumentally reli-
able in predicting empirical results. 

Figure 1b stylizes a typical organization science approach: 

1. A theory is induced after an investigator has gained an appreci-
ation of some aspect of organizational behavior.

2. An iconic model is often added to give a pictorial view of the
interrelation of the variables or to show hypothesized path coef-
ficients, or possibly a regression model is formulated. 

3. The model develops in parallel with the theory as the latter is
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tested for both experimental and ontological adequacy by see-
ing whether effects predicted by the theory can be discovered
in some sampling of the phenomena. 

Figure 1c stylizes the semantic conception: 

1. The theory, model, and phenomena are viewed as independent
entities.

2. Science is bifurcated into two independent but not unrelated
truth-testing activities:
(a) experimental adequacy is tested by seeing whether the
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Figure 1 Conceptions of the axiom–theory–model–phenomena
relationship
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theory, stated as counterfactual conditionals, predicts the
empirical behavior of the model (think of the model as an
isolated idealized physical system moved into a laboratory or
onto a computer); 

(b) ontological adequacy is tested by comparing the isomor-
phism of the model’s idealized structures/processes against
that portion of the total relevant “real-world” phenomena
defined as “within the scope of the theory.”

It is important to emphasize that in the semantic conception,
“theory” is always hooked to and tested via the model. “Theory”
does not attempt to explain “real-world” behavior; it only attempts
to explain “model” behavior. It does its testing in the isolated, ide-
alized physical world structured into the model. “Theory” is not
considered a failure because it does not become elaborated and
fully tested against all the complex effects characterizing the real-
world phenomenon. The mathematical or computational model is
used to structure up aspects of interest within the full complexity
of the real-world phenomenon and defined as “within the scope”
of the theory. Then the model is used to test the “if A then B”
counterfactuals of the theory to consider how a firm—as mod-
eled—might behave under various possibly occurring conditions.
Thus a model would not attempt to portray all aspects of, say, note-
book computer firms—only those within the scope of the theory
being developed. And, if the theory did not predict all aspects of
these firms’ behaviors under the various relevant real-world con-
ditions, it would not be considered a failure. However, this is only
half the story.

Parallel to developing the experimental adequacy of the
“theory–model” relationship is the activity of developing the onto-
logical adequacy of the “model–phenomena” relationship. How
well does the model represent or refer to the “real-world” phe-
nomena? For example, how well does an idealized wind-tunnel
model of an airplane wing represent the behavior of a full-sized
wing on a plane flying in a storm? How well does a drug shown to
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work on “idealized” lab rats work on people of different ages,
weights, and physiologies? How well might a computational
model, such as the Kauffman (1993) NK model that Levinthal
(1997a, b), Rivkin (1997, 1998), Baum (1999), and McKelvey
(1999a, b) use, represent coevolutionary competition, that is, actu-
ally represent that kind of competition in, say, the notebook com-
puter industry?

A primary difficulty encountered with the axiomatic conception
is the presumption that only one fully adequate model derives
from the underlying axioms—only one model can “truly” repre-
sent reality in a rigorously developed science. For some philoso-
phers, therefore, a discipline such as evolutionary biology fails as a
science. Instead of a single axiomatically rooted theory, as pro-
posed by Williams (1970) and defended by Rosenberg (1985), evo-
lutionary theory is more realistically seen as a family of theories,
including theories explaining the mechanisms of natural selection,
mechanisms of heredity, mechanisms of variation, and a taxonomic
theory of species definition (Thompson, 1989, Ch. 1).

Since the semantic conception does not require axiomatic
reduction, it tolerates multiple models. Thus, “truth” is not defined
in terms of reduction to a single model. Mathematical, set-
theoretical, and computational models are considered equal con-
tenders to represent real-world phenomena. In physics, both wave
and particle models are accepted because they both produce
instrumentally reliable predictions. That they also have different
theoretical explanations is not considered a failure. Each is an iso-
lated, idealized physical system representing different aspects of
real-world phenomena. In evolutionary theory there is no single
“theory” of evolution. There are in fact subordinate families of
theories (multiple models) within the main families about natural
selection, heredity, variation, and taxonomic grouping. Org-
anization science also consists of various families of theories, each
having families of competing theories within it—families of
theories about process theory, population ecology, organizational
culture, structural design, corporate performance, sustained
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competitive advantage, organizational change, and so on.
Axiomatic reduction does not appear to be in sight for any of these
theories. The semantic conception defines a model-centered sci-
ence comprised of families of models without a single axiomatic
root.

MODEL-CENTERED ORGANIZATION SCIENCE

If the semantic conception of science is defined as preferring for-
malized families of models, theory–model experimental tests, and
the model–phenomena ontological tests, organization science gen-
erally misses the mark, although population ecology studies meas-
ure up fairly well (Hannan and Freeman, 1989; Hannan and
Carroll, 1992). Truth-tests are typically defined in terms of a direct
“theory–phenomena” corroboration, with the results that:

1. Organization science does not have the bifurcated theory–
model and model–phenomena tests.

2. The strong counterfactual type of theory confirmation is seldom
achieved because organization science attempts to predict real-
world behavior rather than model behavior.

3. Formal models are considered invalid because their inherent
idealizations invariably fail to represent real-world complexity;
that is, instrumental reliability is low.

Semantic conception philosophers do take pains to insist that their
epistemology does not represent a shift away from the desirability
of moving toward formalized (while not necessarily axiomatic)
models. However, Suppe (1977, p. 228), for example, chooses the
phase space foundation rather than set theory because it does not
rule out qualitative models. In organization science there are a
wide variety of formalized models (Carley, 1995), but in fact most
organization and strategy theories are not formalized, as a reading
of such basic sources as Clegg, Hardy, and Nord (1996), Donaldson
(1996), Pfeffer (1997), and Scott (1998) readily demonstrates. In
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addition, these theories have low ontological adequacy, and if the
testing of counterfactual conditionals is any indication, little exper-
imental adequacy either.

Witchcraft, shamanism, astrology, and the like are notorious for
attaching post hoc explanations to apparent regularities that are
frequently accidental—“disaster struck in 1937 after the planets
were lined up thus.” Nomic necessity—the requirement that one
kind of protection against attempting to explain a possibly acci-
dental regularity occurs when rational
logic can point to a lawful relation
between an underlying structure or
force that, if present, would produce
the regularity—is a necessary condi-
tion: “If force A then regularity B.”
However, using an experimentally cre-
ated result to test the “if A then B”
counterfactual posed by the law in
question is critically important.
Experiments more than anything else separate science from witch-
craft or antiscience. Without a program of experimental testing,
complexity applications to organization science remain metaphor-
ical and, if made the basis of consulting agendas and other man-
agerially oriented advice, are difficult to distinguish from
witchcraft.

An exemplar scientific program is Kauffman’s 25 years or so of
work on his “complexity may thwart selection” hypothesis, sum-
marized in his 1993 book. He presents numerous computational
experiments and the model structures and results of these are sys-
tematically compared with the results of vast numbers of other
experiments carried out by biologists over the years. Should we
accept complexity applications to management as valid without a
similar course of experiments having taken place?

Agreed, the “origin of life” question is timeless, so Kauffman’s
research stream is short by comparison. No doubt some aspects of
management change radically over only a few years. On the other
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hand, many organizational problems, such as centralization–
decentralization, specialization–generalization, environmental fit,
learning, and change, seem timeless, are revisited over and over,
and could easily warrant longer research programs. Computational
models have already been applied to these and other issues, as
Carley’s review indicates. But the surface has hardly been
scratched—the coevolution of the theory–model and model–-
phenomena links has barely begun the search for the optimum
match of organization theory, model, and real world.

AGENT-BASED MODELS

It is clear from the literature described in Nicolis and Prigogine
(1989), Kaye (1993), Kauffman (1993), Mainzer (1994), and Favre et
al. (1995) that natural science-based complexity theory fits the
semantic conception’s rewriting of how effective science works.
There is now a considerable natural science literature of formal-
ized mathematical and computational theory on the one hand, and
many tests of the adequacy of the theoretical models to real-world
phenomena on the other. A study of the literature emanating from
the Santa Fe Institute (Kauffman, 1993; Cowan, Pines, and
Meltzer, 1994; Gumerman and Gell-Mann, 1994; Belew and
Mitchell, 1996; Arthur, Durlauf, and Lane, 1997) shows that
although social science applications lag in their formalized model-
centeredness, the trend is in this direction.

Despite Carley’s citing of over 100 papers using models in
her 1995 review paper, mainstream organization science cannot
be characterized as a model-centered science. There seems to
be a widespread phobia against linear differential equations, the
study of rates, and mathematical formalization in general. A
more suitable and more accessible alternative may be adaptive-
learning agent-based models. The fact that these models are not
closed-form solutions is an imperfection, but organization scien-
tists recognize that equations may be equally imperfect due to
the heroic assumptions required to make them mathematically
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tractable. Is one kind of imperfection better or worse than any
other? Most of the studies cited by Carley do not use agent-based
models.

I began this article with a section on process-level theory, with
special attention paid to organizational microstates, in order to set
up my call here for more emphasis on agent-based models. This
follows leads taken by Cohen, March, and Olsen (1972), March
(1991), Carley (1992, 1997), Carley and Newell (1994), Carley and
Prietula (1994), Carley and Svoboda (1996), Carley and Lee (1997),
Masuch and Warglien (1992), and Warglien and Masuch (1996),
among others. Adaptive learning models assume that agents have
stochastic nonlinear behaviors and that these agents change over
time via stochastic nonlinear adaptive improvements. Assumptions
about agent attributes or capabilities may be as simple as one
rule—“Copy another agent or don’t.” Computational modelers
assume that the aggregate adaptive learning “intelligence,” capa-
bility, or behavior of an organization may be effectively repre-
sented by millions of “nanoagents” in a combinatorial search
space—much like intelligence in our brains appears as a network
of millions of neurons, each following a simple firing rule.
Needless to say, complexity science researchers recognize that
computational models not only fit the basic stochastic nonlinear
microstate assumption, but also simulate various kinds of aggre-
gate physical and social system behaviors.

Although relatively unknown in organization science, “inter-
active particle systems,” “particle,” “nearest neighbor,” or, more
generally, adaptive-learning agent-based models are well known in
the natural sciences. Whatever the class of model, very simple-
minded agents adopt a neighboring agent’s attributes to reduce
energy or gain fitness. The principal modeling classes are spin-
glass (Mézard, Parisi, and Virasoro, 1987; Fischer and Hertz, 1993),
simulated annealing (Arts and Korst, 1989), cellular automata
(Toffoli and Margolus, 1987; Weisbuch, 1993), neural network
(Wasserman, 1989, 1993; Müller and Reinhardt, 1990; Freeman
and Skapura, 1993), genetic algorithm (Holland, 1975, 1995;
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Goldberg, 1989; Mitchell, 1996), and, most recently, population
games (Blume, 1997). For a broader review see Garzon (1995).
Most model applications stay within one class, though Carley’s
(1997) “ORGAHEAD” model uses models from several classes in
a hierarchical arrangement. More specifically within the realm of
complexity applications to firms, Kauffman’s (1993) NK model and
rugged landscape have attracted attention (Levinthal, 1997a, b;
Levinthal and Warglien, 1997; Rivkin, 1997, 1998; Sorenson, 1997;
Baum, 1999; and McKelvey, 1999a, b). These are all theory–model
experimental adequacy studies, although Sorenson’s study is a
model–phenomena ontological test.

CONCLUSION

If we are to have an effective complexity science applied to firms,
we should first see a systematic agenda linking theory develop-
ment with mathematical or computational model development.
The counterfactual tests are carried out via the theory–model link.
We should also see a systematic agenda linking model structures
with real-world structures. The tests of the model–phenomena link
focus on how well the model refers, that is, represents real-world
behavior. Without evidence that both of these agendas are being
actively pursued, there is no reason to believe that we have a com-
plexity science of firms.

A cautionary note: Even if the semantic conception program is
adopted, organization science still seems likely to suffer in instru-
mental reliability compared to the natural sciences. The “isolated,
idealized physical systems” of natural science are more easily iso-
lated and idealized, and with lower cost to reliability, than are
socioeconomic systems. Natural science lab experiments more
reliably test nomic-based counterfactual conditionals and have
much higher ontological representative accuracy. In other words,
its “closed systems” are less different from its “open systems” than
is the case for socioeconomic systems. This leads to their higher
instrumental reliability.
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The good news is that the semantic conception makes improv-
ing instrumental reliability easier to achieve. The benefit stems
from the bifurcation of scientific activity into independent tests
for experimental adequacy and ontological adequacy. First, by
having one set of scientific activities focus only on the predictive
aspects of a theory–model link, the chances improve of finding
models that test counterfactuals with higher experimental instru-
mental reliability—the reliability of predictions increases.
Second, by having the other set of scientific activities focus only
on the model structures across the model–phenomena link, onto-
logical instrumental reliability will also improve. For these activi-
ties, reliability hinges on the isomorphism of the structures caus-
ing both model and real-world behavior, not on whether the
broader predictions across the full range of the complex phenom-
ena occur with high probability. Thus, in the semantic conception
instrumental reliability now rests on the joint probability of two
elements: 

1. predictive experimental reliability; and 
2. model structure reliability.

If a science is not centered around (preferably) formalized compu-
tational or mathematical models, it has little chance of being effec-
tive or adequate. Such is the message of late twentieth-century
(postpositivist) philosophy of science. This message tells us very
clearly that in order for an organizational complexity science to
avoid faddism and scientific discredit, it must become model-
centered.

NOTES

1. A review of some 30 “complexity theory and management” books, coedited by
Stu Kauffman, Steve Maguire, and Bill McKelvey, will appear in a special
review issue of Emergence (1999, #2).

2. I substitute “experimental” for the term “empirical” that van Fraassen uses so
as to distinguish more clearly between the testing of counterfactuals (which
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could be via formal models and laboratory or computer experiments) and
empirical (real-world) reference or representativeness—both of which figure
in van Fraassen’s use of “empirical.”

BIBLIOGRAPHY

Aarts, E. and Korst, J. (1989) Simulated Annealing and Boltzmann Machines, New
York: Wiley.

Abbott, A. (1990) “A Primer on Sequence Methods,” Organization Science, 1,
373–93.

Anderson, P.W., Arrow, K.J. and Pines, D. (eds) (1988) The Economy as an
Evolving Complex System, Proceedings of the Santa Fe Institute Vol. V,
Reading, MA: Addison-Wesley.

Aronson, J.L., Harré, R. and Way, E.C. (1994) Realism Rescued, London:
Duckworth.

Arthur, W.B., Durlauf, S.N. and Lane, D.A. (eds) (1997) The Economy as an
Evolving Complex System, Proceedings Vol. XXVII, Reading, MA: Addison-
Wesley. 

Bacharach, S.B. (1989) “Organization Theories: Some Criteria for Evaluation,”
Academy of Management Review, 14, 496–515.

Baum, J.A.C. (1999) “Whole-Part Coevolutionary Competition in Organizations,”
in J.A.C. Baum and B. McKelvey (eds), Variations in Organization Science: in
Honor of Donald T. Campbell, Thousand Oaks, CA: Sage.

Beatty, J. (1981) “What’s Wrong with the Received View of Evolutionary Theory?”
in P.D. Asquith and R.N. Giere (eds), PSA 1980, Vol. 2, East Lansing, MI:
Philosophy of Science Association, 397–426.

Beatty, J. (1987) “On Behalf of the Semantic View,” Biology and Philosophy, 2,
17–23.

Belew, R.K. and M. Mitchell (eds) (1996) Adaptive Individuals in Evolving
Populations, Proceedings Vol. XXVI, Reading, MA: Addison-Wesley.

Beth, E. (1961) “Semantics of Physical Theories,” in H. Freudenthal (ed.), The
Concept and the Role of the Model in Mathematics and Natural and Social
Sciences, Dordrecht: Reidel, 48–51.

Bhaskar, R. (1975) A Realist Theory of Science, London: Leeds Books [2nd edn
published by Verso (London) 1997].

Blaug, M. (1980) The Methodology of Economics, New York: Cambridge
University Press.

Blume, L.E. (1997) “Population Games,” in W.B. Arthur, S.N. Durlauf and D.A.
Lane (eds), The Economy as an Evolving Complex System, Proceedings of the
Santa Fe Institute, Vol. XXVII, Reading, MA: Addison-Wesley, 425–60.

Burrell, G. (1996), “Normal Science, Paradigms, Metaphors, Discourses and
Genealogies of Analysis,” in S.R. Clegg, C. Hardy and W.R. Nord (eds),

EMERGENCE

26

Issue 1-1  4/3/99  5:54 pm  Page 26



Handbook of Organization Studies, Thousand Oaks, CA: Sage, 642–58.
Burrell, G. and Morgan, G. (1979) Sociological Paradigms and Organizational

Analysis, London: Heinemann.
Camerer, C. (1985) “Redirecting Research in Business Policy and Strategy,”

Strategic Management Journal, 6, 1–15.
Camerer, C. (1995) “Individual Decision Making,” in J.H. Kagel and A.E. Roth

(eds), The Handbook of Experimental Economics, Princeton, NJ: Princeton
University Press, 587–703.

Campbell, D.T. (1974), “Evolutionary Epistemology,” in P.A. Schilpp (ed.), The
Philosophy of Karl Popper (Vol. 14, I. & II), The Library of Living
Philosophers, La Salle, IL: Open Court. [Reprinted in G. Radnitzky and W.W.
Bartley, III (eds), Evolutionary Epistemology, Rationality, and the Sociology
of Knowledge, La Salle, IL: Open Court, 47–89.]

Campbell, D.T. (1988), “A General ‘Selection Theory’ as Implemented in
Biological Evolution and in Social Belief-Transmission-with-Modification in
Science,” Biology and Philosophy, 3, 171–7.

Campbell, D.T. (1995) “The Postpositivist, Non-Foundational, Hermeneutic
Epistemology Exemplified in the Works of Donald W. Fiske,” in P.E. Shrout
and S.T. Fiske (eds), Personality Research, Methods and Theory: A Festschrift
Honoring Donald W. Fiske, Hillsdale, NJ: Erlbaum, 13–27.

Carley, K.M. (1992) “Organizational Learning and Personnel Turnover,”
Organization Science, 3, 20–46.

Carley, K.M. (1995) “Computational and Mathematical Organization Theory:
Perspective and Directions,” Computational and Mathematical Organization
Theory, 1, 39–56.

Carley, K.M. (1997), “Organizational Adaptation in Volatile Environments,”
unpublished working paper, Department of Social and Decision Sciences,
H.J. Heinz III School of Public Policy and Management, Carnegie Mellon
University, Pittsburgh, PA.

Carley, K.M. and Lee, J. (1997) “Dynamic Organizations: Organizational
Adaptation in a Changing Environment,” unpublished working paper,
Department of Social and Decision Sciences, H.J. Heinz III School of Public
Policy and Management, Carnegie Mellon University, Pittsburgh, PA.

Carley, K.M. and Newell, A. (1994) “The Nature of the Social Agent,” Journal of
Mathematical Sociology, 19, 221–62.

Carley, K.M. and Prietula, M.J. (eds) (1994), Computational Organization Theory,
Hillsdale, NJ: Erlbaum.

Carley, K.M. and Svoboda, D.M. (1996) “Modeling Organizational Adaptation as a
Simulated Annealing Process,” Sociological Methods and Research, 25, 138–68.

Chia, R. (1996) Organizational Analysis as Deconstructive Practice, Berlin: Walter
de Gruyter.

VOLUME #1, ISSUE #1

27

Issue 1-1  4/3/99  5:54 pm  Page 27



Clegg, S.R., Hardy, C. and Nord, W.R. (eds) (1996) Handbook of Organization
Studies, Thousand Oaks, CA: Sage.

Cohen, J. and Stewart, I. (1994) The Collapse of Chaos: Discovering Simplicity in
a Complex World, New York: Viking/Penguin.

Cohen, M.D., March, J.G. and Olsen, J.P. (1972) “A Garbage Can Model of
Organizational Choice,” Administrative Science Quarterly, 17, 1–25.

Cowan, G.A., Pines, D. and Meltzer, D. (eds) (1994) Complexity: Metaphors,
Models, and Reality, Proceedings Vol. XIX, Reading, MA: Addison-Wesley.

Cramer, F. (1993) Chaos and Order: The Complex Structure of Living Things
(trans. D. L. Loewus), New York: VCH.

De Regt, C.D.G. (1994) Representing the World by Scientific Theories: The Case
for Scientific Realism, Tilburg: Tilburg University Press.

Devitt, M. (1984) Realism and Truth, Oxford: Oxford University Press.
Donaldson, L. (1996) For Positivist Organization Theory, Thousand Oaks, CA:

Sage.
Epstein, J.M. and Axtell, R. (1996) Growing Artificial Societies: Social Science

from the Bottom Up, Cambridge, MA: MIT Press.
Favre, A., Guitton, H., Guitton, J., Lichnerowicz, A. and Wolff, E. (1995) Chaos

and Determinism (trans. B.E. Schwarzbach), Baltimore: Johns Hopkins
University Press.

Fischer, K.H. and Hertz, J.A. (1993) Spin Glasses, New York: Cambridge
University Press.

Freeman, J.A. and Skapura, D.M. (1992) Neural Networks: Algorithms,
Applications, and Programming Techniques, Reading, MA: Addison-Wesley.

Garzon, M. (1995) Models of Massive Parallelism, Berlin: Springer-Verlag.
Goldberg, D.E. (1989) Genetic Algorithms in Search, Optimization and Machine

Learning, Reading, MA: Addison-Wesley.
Gumerman, G.J. and Gell-Mann, M. (eds) (1994) Understanding Complexity in the

Prehistoric Southwest, Proceedings Vol. XVI, Reading, MA: Addison-Wesley.
Hahlweg, K. and Hooker, C.A. (eds) (1989) Issues in Evolutionary Epistemology,

New York: State University of New York Press.
Hannan, M.T. and Carroll, G.R. (1992) Dynamics of Organizational Populations,

New York: Oxford University Press.
Hannan, M.T. and Freeman, J. (1989) Organizational Ecology, Cambridge, MA:

Harvard University Press.
Hausman, D.M. (1992) Essays on Philosophy and Economic Methodology, New

York: Cambridge University Press.
Hogarth, R.M. and Reder, M.W. (eds) (1987) Rational Choice: the Contrast

Between Economics and Psychology, Chicago, IL: University of Chicago
Press.

Holland, J. (1975) Adaptation in Natural and Artificial Systems, Ann Arbor, MI:

EMERGENCE

28

Issue 1-1  4/3/99  5:54 pm  Page 28



University of Michigan Press.
Holland, J.H. (1995) Hidden Order, Reading, MA: Addison-Wesley.
Homans, G.C. (1950) The Human Group, New York: Harcourt.
Hunt, S.D. (1991) Modern Marketing Theory: Critical Issues in the Philosophy of

Marketing Science, Cincinnati, OH: South-Western.
Kauffman, S.A. (1993) The Origins of Order: Self-Organization and Selection in

Evolution, New York: Oxford University Press.
Kaye, B. (1993) Chaos and Complexity, New York: VCH.
Levinthal, D.A. (1997a) “Adaptation on Rugged Landscapes,” Management

Science, 43, 934–50.
Levinthal, D.A. (1997b) “The Slow Pace of Rapid Technological Change:

Gradualism and Punctuation in Technological Change,” unpublished man-
uscript, The Wharton School, University of Pennsylvania, Philadelphia,
PA.

Levinthal, D.A. and Warglien, M. (1997) “Landscape Design: Designing for Local
Action in Complex Worlds,” unpublished manuscript, The Wharton School,
University of Pennsylvania, Philadelphia, PA.

Lloyd, E.A. (1988) The Structure and Confirmation of Evolutionary Theory,
Princeton, NJ: Princeton University Press.

Mackenzie, K.D. (1986) Organizational Design: the Organizational Audit and
Analysis Technology, Norwood, NJ: Ablex.

Mainzer, K. (1994) Thinking in Complexity: The Complex Dynamics of Matter,
Mind, and Mankind, New York: Springer-Verlag.

March, J.G. (1991) “Exploration and Exploitation in Organizational Learning,”
Organization Science, 2, 71–87.

Masuch, M. and Warglien, M. (1992) Artificial Intelligence in Organization and
Management Theory, Amsterdam: Elsevier Science.

McKelvey, B. (1997) “Quasi-natural Organization Science,” Organization Science,
8, 351–80.

McKelvey, B. (1999a) “Avoiding Complexity Catastrophe in Coevolutionary
Pockets: Strategies for Rugged Landscapes,” Organization Science (special
issue on Complexity Theory).

McKelvey, B. (1999b) “Self-Organization, Complexity Catastrophes, and
Microstate Models at the Edge of Chaos,” in J.A.C. Baum and B. McKelvey
(eds), Variations in Organization Science: in Honor of Donald T. Campbell,
Thousand Oaks, CA: Sage.

McKelvey, B. (1999c) “Toward a Campbellian Realist Organization Science,” in
J.A.C. Baum and B. McKelvey (eds), Variations in Organization Science: in
Honor of Donald T. Campbell, Thousand Oaks, CA: Sage.

Merriam Webster’s Collegiate Dictionary (1996) (10th edn), Springfield, MA:
Merriam-Webster.

VOLUME #1, ISSUE #1

29

Issue 1-1  4/3/99  5:54 pm  Page 29



Mézard, M., Parisi, G. and Vivasoro, M.A. (1987) Spin Glass Theory and Beyond,
Singapore: World Scientific. 

Micklethwait, J. and Wooldridge, A. (1996) The Witchdoctors: Making Sense of the
Management Gurus, New York: Times Books.

Mitchell, M. (1996) An Introduction to Genetic Algorithms, Cambridge, MA: MIT
Press.

Montgomery, C.A., Wernerfelt, B. and Balakrishnan, S. (1989) “Strategy Content
and the Research Process: A Critique and Commentary,” Strategic
Management Journal, 10, 189–97.

Müller, B. and Reinhardt, J. (1990) Neural Networks, New York: Springer-Verlag.
Nicolis, G. and Prigogine, I. (1989) Exploring Complexity: an Introduction, New

York: Freeman.
Nola, R. (1988) Relativism and Realism in Science, Dordrecht: Kluwer.
Parsons, T. (1960) Structure and Process in Modern Societies, Glencoe, IL: Free

Press.
Peters, R.H. (1991) A Critique for Ecology, Cambridge: Cambridge University

Press.
Pfeffer, J. (1982) Organizations and Organization Theory, Boston, MA: Pitman.
Pfeffer, J. (1993) “Barriers to the Advancement of Organizational Science:

Paradigm Development as a Dependent Variable,” Academy of Management
Review, 18, 599–620.

Pfeffer, J. (1997) New Directions for Organization Theory, New York: Oxford
University Press.

Popper, K.R. (1982) Realism and the Aim of Science [From the Postscript to the
Logic of Scientific Discovery], W.W. Bartley III (ed.), Totowa, NJ: Rowman
and Littlefield.

Porter, M.E. (1985) Competitive Advantage, New York: Free Press.
Prahalad, C.K. and Hamel, G. (1990) “The Core Competence of the Corporation,”

Harvard Business Review, 68, 78–91.
Prigogine, I. and Stengers, I. (1984) Order out of Chaos: Man’s New Dialogue with

Nature, New York: Bantam.
Redman, D.A. (1991) Economics and the Philosophy of Science, New York: Oxford

University Press.
Reed, M. and Hughes, M. (eds) (1992) Rethinking Organization: New Directions

in Organization Theory and Analysis, London: Sage.
Rescher, N. (1970) Scientific Explanation, New York: Collier-Macmillan.
Rescher, N. (1987) Scientific Realism: a Critical Reappraisal, Dordrecht: Reidel.
Rivkin, J. (1997) “Imitation of Complex Strategies,” presented at the Academy of

Management Meeting, Boston, MA.
Rivkin, J. (1998) “Optimally Suboptimal Organizations: Local Search on Complex

Landscapes,” presented at Academy of Management Meeting, San Diego, CA.

EMERGENCE

30

Issue 1-1  4/3/99  5:54 pm  Page 30



Rosenberg, A. (1985) The Structure of Biological Science, Cambridge: Cambridge
University Press.

Sanchez, R. (1993) “Strategic Flexibility, Firm Organization, and Managerial
Work in Dynamic Markets: a Strategic Options Perspective,” Advances in
Strategic Management, 9, 251–91.

Schrödinger, E. (1944) What is Life: the Physical Aspect of the Living Cell,
Cambridge: Cambridge University Press.

Scott, W.R. (1995) Institutions and Organizations, Thousand Oaks, CA: Sage.
Scott, W.R. (1998) Organizations: Rational, Natural, and Open Systems (4th edn),

Englewood Cliffs, NJ: Prentice-Hall.
Silverman, D. (1971) The Theory of Organisations, New York: Basic Books.
Sorenson, O. (1997) “The Complexity Catastrophe in the Evolution in the

Computer Industry: Interdependence and Adaptability in Organizational
Evolution,” unpublished PhD dissertation, Sociology Department, Stanford
University, Stanford, CA.

Staw, B.M. (ed.) (1991) Psychological Dimensions of Organizational Behavior,
Englewood Cliffs, NJ: Prentice-Hall.

Suppe, F.  (1967) “The Meaning and Use of Models in Mathematics and the
Exact Sciences,” unpublished PhD dissertation, University of Michigan, Ann
Arbor.

Suppe, F. (1977) The Structure of Scientific Theories (2nd edn), Chicago:
University of Chicago Press.

Suppe, F. (1989) The Semantic Conception of Theories and Scientific Realism,
Urbana-Champaign, IL: University of Illinois Press.

Suppes, P. (1961) “A Comparison of the Meaning and Use of Models in
Mathematics and the Empirical Sciences,” in H. Freudenthal (ed.), The
Concept and the Role of the Model in Mathematics and Natural and Social
Sciences, Dordrecht: Reidel, 163–77.

Suppes, P. (1962) “Models of Data,” in E. Nagel, P. Suppes, and A. Tarski
(eds), Logic, Methodology, and Philosophy of Science: Proceedings of the
1960 International Congress, Stanford, CA: Stanford University Press,
252–61.

Suppes, P. (1967) “What is Scientific Theory?” in S. Morgenbesser (ed.),
Philosophy of Science Today, New York: Meridian, 55–67.

Sutton, R.I. and Staw, B.M. (1995) “What Theory Is Not,” Administrative Science
Quarterly, 40, 371–84.

Teece, D. J., Pisano, G. and Shuen, A. (1994) “Dynamic Capabilities and Strategic
Management,” CCC working paper #94-9, Center for Research in
Management, University of California Berkeley.

Thompson, P. (1989) The Structure of Biological Theories, Albany, NY: State
University of New York Press.

VOLUME #1, ISSUE #1

31

Issue 1-1  4/3/99  5:54 pm  Page 31



Toffoli, T. and Margolus, N. (1987) Cellular Automata Machines, Cambridge, MA:
MIT Press.

Van de Ven, A.H. (1992) “Suggestions for Studying Strategy Process: a Research
Note,” Strategic Management Journal, 13: 169–88.

van Fraassen, B.C. (1970) “On the Extension of Beth’s Semantics of Physical
Theories,” Philosophy of Science, 37, 325–39.

van Fraassen, B.C. (1980) The Scientific Image, Oxford: Clarendon.
Warglien, M. and Masuch, M. (eds) 1995) The Logic of Organizational Disorder,

Berlin: Walter de Gruyter.
Wasserman, P.D. (1989) Neural Computing: Theory and Practice, New York: Van

Nostrand Reinhold.
Wasserman, P.D. (1993) Advanced Methods in Neural Computing, New York: Van

Nostrand Reinhold.
Weick, K.E. (1995) Sensemaking in Organizations, Thousand Oaks, CA: Sage.
Weisbuch, G. (1993) Complex Systems Dynamics: an Introduction to Automata

Networks (trans. S. Ryckebusch), Lecture Notes Vol. II, Santa Fe Institute,
Reading, MA: Addison-Wesley.

Wernerfelt, B. (1984) “A Resource-Based View of the Firm,” Strategic
Management Journal, 5, 171–80.

Williams, M.B. (1970) “Deducing the Consequences of Evolution: a Math-
ematical Model,” Journal of Theoretical Biology, 29, 343–85.

Zucker, L.G. (1988) Institutional Patterns and Organizations: Culture and
Environment, Cambridge, MA: Ballinger.

EMERGENCE

32

Issue 1-1  4/3/99  5:54 pm  Page 32


